Spaces:
Running
Running
from copy import deepcopy | |
import math | |
import os, sys | |
import random | |
import traceback | |
from tqdm import tqdm | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import ffmpeg | |
import os | |
from typing import Generator, List, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import yaml | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from feature_extractor.cnhubert import CNHubert | |
from module.models import SynthesizerTrn | |
import librosa | |
from time import time as ttime | |
from tools.i18n.i18n import I18nAuto | |
from my_utils import load_audio | |
from module.mel_processing import spectrogram_torch | |
from TTS_infer_pack.text_segmentation_method import splits | |
from TTS_infer_pack.TextPreprocessor import TextPreprocessor | |
i18n = I18nAuto() | |
# configs/tts_infer.yaml | |
""" | |
default: | |
device: cpu | |
is_half: false | |
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large | |
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base | |
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt | |
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth | |
flash_attn_enabled: true | |
custom: | |
device: cuda | |
is_half: true | |
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large | |
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base | |
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt | |
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth | |
flash_attn_enabled: true | |
""" | |
def set_seed(seed:int): | |
seed = int(seed) | |
seed = seed if seed != -1 else random.randrange(1 << 32) | |
print(f"Set seed to {seed}") | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
try: | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# torch.backends.cudnn.deterministic = True | |
# torch.backends.cudnn.benchmark = False | |
# torch.backends.cudnn.enabled = True | |
except: | |
pass | |
return seed | |
class TTS_Config: | |
default_configs={ | |
"device": "cpu", | |
"is_half": False, | |
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", | |
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", | |
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", | |
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", | |
"flash_attn_enabled": True | |
} | |
configs:dict = None | |
def __init__(self, configs: Union[dict, str]=None): | |
# 设置默认配置文件路径 | |
configs_base_path:str = "GPT_SoVITS/configs/" | |
os.makedirs(configs_base_path, exist_ok=True) | |
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml") | |
if configs in ["", None]: | |
if not os.path.exists(self.configs_path): | |
self.save_configs() | |
print(f"Create default config file at {self.configs_path}") | |
configs:dict = {"default": deepcopy(self.default_configs)} | |
if isinstance(configs, str): | |
self.configs_path = configs | |
configs:dict = self._load_configs(self.configs_path) | |
assert isinstance(configs, dict) | |
default_configs:dict = configs.get("default", None) | |
if default_configs is not None: | |
self.default_configs = default_configs | |
self.configs:dict = configs.get("custom", deepcopy(self.default_configs)) | |
self.device = self.configs.get("device", torch.device("cpu")) | |
self.is_half = self.configs.get("is_half", False) | |
self.flash_attn_enabled = self.configs.get("flash_attn_enabled", True) | |
self.t2s_weights_path = self.configs.get("t2s_weights_path", None) | |
self.vits_weights_path = self.configs.get("vits_weights_path", None) | |
self.bert_base_path = self.configs.get("bert_base_path", None) | |
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) | |
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): | |
self.t2s_weights_path = self.default_configs['t2s_weights_path'] | |
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") | |
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): | |
self.vits_weights_path = self.default_configs['vits_weights_path'] | |
print(f"fall back to default vits_weights_path: {self.vits_weights_path}") | |
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): | |
self.bert_base_path = self.default_configs['bert_base_path'] | |
print(f"fall back to default bert_base_path: {self.bert_base_path}") | |
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): | |
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path'] | |
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") | |
self.update_configs() | |
self.max_sec = None | |
self.hz:int = 50 | |
self.semantic_frame_rate:str = "25hz" | |
self.segment_size:int = 20480 | |
self.filter_length:int = 2048 | |
self.sampling_rate:int = 32000 | |
self.hop_length:int = 640 | |
self.win_length:int = 2048 | |
self.n_speakers:int = 300 | |
self.langauges:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] | |
# print(self) | |
def _load_configs(self, configs_path: str)->dict: | |
with open(configs_path, 'r') as f: | |
configs = yaml.load(f, Loader=yaml.FullLoader) | |
return configs | |
def save_configs(self, configs_path:str=None)->None: | |
configs={ | |
"default":self.default_configs, | |
} | |
if self.configs is not None: | |
configs["custom"] = self.update_configs() | |
if configs_path is None: | |
configs_path = self.configs_path | |
with open(configs_path, 'w') as f: | |
yaml.dump(configs, f) | |
def update_configs(self): | |
self.config = { | |
"device" : str(self.device), | |
"is_half" : self.is_half, | |
"t2s_weights_path" : self.t2s_weights_path, | |
"vits_weights_path" : self.vits_weights_path, | |
"bert_base_path" : self.bert_base_path, | |
"cnhuhbert_base_path": self.cnhuhbert_base_path, | |
"flash_attn_enabled" : self.flash_attn_enabled | |
} | |
return self.config | |
def __str__(self): | |
self.configs = self.update_configs() | |
string = "TTS Config".center(100, '-') + '\n' | |
for k, v in self.configs.items(): | |
string += f"{str(k).ljust(20)}: {str(v)}\n" | |
string += "-" * 100 + '\n' | |
return string | |
def __repr__(self): | |
return self.__str__() | |
class TTS: | |
def __init__(self, configs: Union[dict, str, TTS_Config]): | |
if isinstance(configs, TTS_Config): | |
self.configs = configs | |
else: | |
self.configs:TTS_Config = TTS_Config(configs) | |
self.t2s_model:Text2SemanticLightningModule = None | |
self.vits_model:SynthesizerTrn = None | |
self.bert_tokenizer:AutoTokenizer = None | |
self.bert_model:AutoModelForMaskedLM = None | |
self.cnhuhbert_model:CNHubert = None | |
self._init_models() | |
self.text_preprocessor:TextPreprocessor = \ | |
TextPreprocessor(self.bert_model, | |
self.bert_tokenizer, | |
self.configs.device) | |
self.prompt_cache:dict = { | |
"ref_audio_path":None, | |
"prompt_semantic":None, | |
"refer_spepc":None, | |
"prompt_text":None, | |
"prompt_lang":None, | |
"phones":None, | |
"bert_features":None, | |
"norm_text":None, | |
} | |
self.stop_flag:bool = False | |
self.precison:torch.dtype = torch.float16 if self.configs.is_half else torch.float32 | |
def _init_models(self,): | |
self.init_t2s_weights(self.configs.t2s_weights_path) | |
self.init_vits_weights(self.configs.vits_weights_path) | |
self.init_bert_weights(self.configs.bert_base_path) | |
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) | |
# self.enable_half_precision(self.configs.is_half) | |
def init_cnhuhbert_weights(self, base_path: str): | |
print(f"Loading CNHuBERT weights from {base_path}") | |
self.cnhuhbert_model = CNHubert(base_path) | |
self.cnhuhbert_model=self.cnhuhbert_model.eval() | |
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) | |
if self.configs.is_half and str(self.configs.device)!="cpu": | |
self.cnhuhbert_model = self.cnhuhbert_model.half() | |
def init_bert_weights(self, base_path: str): | |
print(f"Loading BERT weights from {base_path}") | |
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) | |
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) | |
self.bert_model=self.bert_model.eval() | |
self.bert_model = self.bert_model.to(self.configs.device) | |
if self.configs.is_half and str(self.configs.device)!="cpu": | |
self.bert_model = self.bert_model.half() | |
def init_vits_weights(self, weights_path: str): | |
print(f"Loading VITS weights from {weights_path}") | |
self.configs.vits_weights_path = weights_path | |
self.configs.save_configs() | |
dict_s2 = torch.load(weights_path, map_location=self.configs.device) | |
hps = dict_s2["config"] | |
self.configs.filter_length = hps["data"]["filter_length"] | |
self.configs.segment_size = hps["train"]["segment_size"] | |
self.configs.sampling_rate = hps["data"]["sampling_rate"] | |
self.configs.hop_length = hps["data"]["hop_length"] | |
self.configs.win_length = hps["data"]["win_length"] | |
self.configs.n_speakers = hps["data"]["n_speakers"] | |
self.configs.semantic_frame_rate = "25hz" | |
kwargs = hps["model"] | |
vits_model = SynthesizerTrn( | |
self.configs.filter_length // 2 + 1, | |
self.configs.segment_size // self.configs.hop_length, | |
n_speakers=self.configs.n_speakers, | |
**kwargs | |
) | |
# if ("pretrained" not in weights_path): | |
if hasattr(vits_model, "enc_q"): | |
del vits_model.enc_q | |
vits_model = vits_model.to(self.configs.device) | |
vits_model = vits_model.eval() | |
vits_model.load_state_dict(dict_s2["weight"], strict=False) | |
self.vits_model = vits_model | |
if self.configs.is_half and str(self.configs.device)!="cpu": | |
self.vits_model = self.vits_model.half() | |
def init_t2s_weights(self, weights_path: str): | |
print(f"Loading Text2Semantic weights from {weights_path}") | |
self.configs.t2s_weights_path = weights_path | |
self.configs.save_configs() | |
self.configs.hz = 50 | |
dict_s1 = torch.load(weights_path, map_location=self.configs.device) | |
config = dict_s1["config"] | |
self.configs.max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False, | |
flash_attn_enabled=self.configs.flash_attn_enabled) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
t2s_model = t2s_model.to(self.configs.device) | |
t2s_model = t2s_model.eval() | |
self.t2s_model = t2s_model | |
if self.configs.is_half and str(self.configs.device)!="cpu": | |
self.t2s_model = self.t2s_model.half() | |
def enable_half_precision(self, enable: bool = True): | |
''' | |
To enable half precision for the TTS model. | |
Args: | |
enable: bool, whether to enable half precision. | |
''' | |
if str(self.configs.device) == "cpu" and enable: | |
print("Half precision is not supported on CPU.") | |
return | |
self.configs.is_half = enable | |
self.precison = torch.float16 if enable else torch.float32 | |
self.configs.save_configs() | |
if enable: | |
if self.t2s_model is not None: | |
self.t2s_model =self.t2s_model.half() | |
if self.vits_model is not None: | |
self.vits_model = self.vits_model.half() | |
if self.bert_model is not None: | |
self.bert_model =self.bert_model.half() | |
if self.cnhuhbert_model is not None: | |
self.cnhuhbert_model = self.cnhuhbert_model.half() | |
else: | |
if self.t2s_model is not None: | |
self.t2s_model = self.t2s_model.float() | |
if self.vits_model is not None: | |
self.vits_model = self.vits_model.float() | |
if self.bert_model is not None: | |
self.bert_model = self.bert_model.float() | |
if self.cnhuhbert_model is not None: | |
self.cnhuhbert_model = self.cnhuhbert_model.float() | |
def set_device(self, device: torch.device): | |
''' | |
To set the device for all models. | |
Args: | |
device: torch.device, the device to use for all models. | |
''' | |
self.configs.device = device | |
self.configs.save_configs() | |
if self.t2s_model is not None: | |
self.t2s_model = self.t2s_model.to(device) | |
if self.vits_model is not None: | |
self.vits_model = self.vits_model.to(device) | |
if self.bert_model is not None: | |
self.bert_model = self.bert_model.to(device) | |
if self.cnhuhbert_model is not None: | |
self.cnhuhbert_model = self.cnhuhbert_model.to(device) | |
def set_ref_audio(self, ref_audio_path:str): | |
''' | |
To set the reference audio for the TTS model, | |
including the prompt_semantic and refer_spepc. | |
Args: | |
ref_audio_path: str, the path of the reference audio. | |
''' | |
self._set_prompt_semantic(ref_audio_path) | |
self._set_ref_spepc(ref_audio_path) | |
def _set_ref_spepc(self, ref_audio_path): | |
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.configs.filter_length, | |
self.configs.sampling_rate, | |
self.configs.hop_length, | |
self.configs.win_length, | |
center=False, | |
) | |
spec = spec.to(self.configs.device) | |
if self.configs.is_half: | |
spec = spec.half() | |
# self.refer_spepc = spec | |
self.prompt_cache["refer_spepc"] = spec | |
def _set_prompt_semantic(self, ref_wav_path:str): | |
zero_wav = np.zeros( | |
int(self.configs.sampling_rate * 0.3), | |
dtype=np.float16 if self.configs.is_half else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
wav16k = wav16k.to(self.configs.device) | |
zero_wav_torch = zero_wav_torch.to(self.configs.device) | |
if self.configs.is_half: | |
wav16k = wav16k.half() | |
zero_wav_torch = zero_wav_torch.half() | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = self.vits_model.extract_latent(hubert_feature) | |
prompt_semantic = codes[0, 0].to(self.configs.device) | |
self.prompt_cache["prompt_semantic"] = prompt_semantic | |
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None): | |
seq = sequences[0] | |
ndim = seq.dim() | |
if axis < 0: | |
axis += ndim | |
dtype:torch.dtype = seq.dtype | |
pad_value = torch.tensor(pad_value, dtype=dtype) | |
seq_lengths = [seq.shape[axis] for seq in sequences] | |
if max_length is None: | |
max_length = max(seq_lengths) | |
else: | |
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length | |
padded_sequences = [] | |
for seq, length in zip(sequences, seq_lengths): | |
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1) | |
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) | |
padded_sequences.append(padded_seq) | |
batch = torch.stack(padded_sequences) | |
return batch | |
def to_batch(self, data:list, prompt_data:dict=None, batch_size:int=5, threshold:float=0.75, split_bucket:bool=True): | |
_data:list = [] | |
index_and_len_list = [] | |
for idx, item in enumerate(data): | |
norm_text_len = len(item["norm_text"]) | |
index_and_len_list.append([idx, norm_text_len]) | |
batch_index_list = [] | |
if split_bucket: | |
index_and_len_list.sort(key=lambda x: x[1]) | |
index_and_len_list = np.array(index_and_len_list, dtype=np.int64) | |
batch_index_list_len = 0 | |
pos = 0 | |
while pos <index_and_len_list.shape[0]: | |
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))]) | |
pos_end = min(pos+batch_size,index_and_len_list.shape[0]) | |
while pos < pos_end: | |
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32) | |
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8) | |
if (score>=threshold) or (pos_end-pos==1): | |
batch_index=index_and_len_list[pos:pos_end, 0].tolist() | |
batch_index_list_len += len(batch_index) | |
batch_index_list.append(batch_index) | |
pos = pos_end | |
break | |
pos_end=pos_end-1 | |
assert batch_index_list_len == len(data) | |
else: | |
for i in range(len(data)): | |
if i%batch_size == 0: | |
batch_index_list.append([]) | |
batch_index_list[-1].append(i) | |
for batch_idx, index_list in enumerate(batch_index_list): | |
item_list = [data[idx] for idx in index_list] | |
phones_list = [] | |
phones_len_list = [] | |
# bert_features_list = [] | |
all_phones_list = [] | |
all_phones_len_list = [] | |
all_bert_features_list = [] | |
norm_text_batch = [] | |
bert_max_len = 0 | |
phones_max_len = 0 | |
for item in item_list: | |
if prompt_data is not None: | |
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ | |
.to(dtype=self.precison) | |
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]) | |
phones = torch.LongTensor(item["phones"]) | |
# norm_text = prompt_data["norm_text"]+item["norm_text"] | |
else: | |
all_bert_features = item["bert_features"]\ | |
.to(dtype=self.precison) | |
phones = torch.LongTensor(item["phones"]) | |
all_phones = phones | |
# norm_text = item["norm_text"] | |
bert_max_len = max(bert_max_len, all_bert_features.shape[-1]) | |
phones_max_len = max(phones_max_len, phones.shape[-1]) | |
phones_list.append(phones) | |
phones_len_list.append(phones.shape[-1]) | |
all_phones_list.append(all_phones) | |
all_phones_len_list.append(all_phones.shape[-1]) | |
all_bert_features_list.append(all_bert_features) | |
norm_text_batch.append(item["norm_text"]) | |
phones_batch = phones_list | |
max_len = max(bert_max_len, phones_max_len) | |
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) | |
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len) | |
# all_bert_features_batch = all_bert_features_list | |
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=self.precison) | |
for idx, item in enumerate(all_bert_features_list): | |
all_bert_features_batch[idx, :, : item.shape[-1]] = item | |
batch = { | |
"phones": phones_batch, | |
"phones_len": torch.LongTensor(phones_len_list), | |
"all_phones": all_phones_batch, | |
"all_phones_len": torch.LongTensor(all_phones_len_list), | |
"all_bert_features": all_bert_features_batch, | |
"norm_text": norm_text_batch | |
} | |
_data.append(batch) | |
return _data, batch_index_list | |
def recovery_order(self, data:list, batch_index_list:list)->list: | |
''' | |
Recovery the order of the audio according to the batch_index_list. | |
Args: | |
data (List[list(np.ndarray)]): the out of order audio . | |
batch_index_list (List[list[int]]): the batch index list. | |
Returns: | |
list (List[np.ndarray]): the data in the original order. | |
''' | |
lenght = len(sum(batch_index_list, [])) | |
_data = [None]*lenght | |
for i, index_list in enumerate(batch_index_list): | |
for j, index in enumerate(index_list): | |
_data[index] = data[i][j] | |
return _data | |
def stop(self,): | |
''' | |
Stop the inference process. | |
''' | |
self.stop_flag = True | |
def run(self, inputs:dict): | |
""" | |
Text to speech inference. | |
Args: | |
inputs (dict): | |
{ | |
"text": "", # str. text to be synthesized | |
"text_lang: "", # str. language of the text to be synthesized | |
"ref_audio_path": "", # str. reference audio path | |
"prompt_text": "", # str. prompt text for the reference audio | |
"prompt_lang": "", # str. language of the prompt text for the reference audio | |
"top_k": 5, # int. top k sampling | |
"top_p": 1, # float. top p sampling | |
"temperature": 1, # float. temperature for sampling | |
"text_split_method": "", # str. text split method, see text_segmentaion_method.py for details. | |
"batch_size": 1, # int. batch size for inference | |
"batch_threshold": 0.75, # float. threshold for batch splitting. | |
"split_bucket: True, # bool. whether to split the batch into multiple buckets. | |
"return_fragment": False, # bool. step by step return the audio fragment. | |
"speed_factor":1.0, # float. control the speed of the synthesized audio. | |
"fragment_interval":0.3, # float. to control the interval of the audio fragment. | |
"seed": -1, # int. random seed for reproducibility. | |
} | |
returns: | |
tulpe[int, np.ndarray]: sampling rate and audio data. | |
""" | |
########## variables initialization ########### | |
self.stop_flag:bool = False | |
text:str = inputs.get("text", "") | |
text_lang:str = inputs.get("text_lang", "") | |
ref_audio_path:str = inputs.get("ref_audio_path", "") | |
prompt_text:str = inputs.get("prompt_text", "") | |
prompt_lang:str = inputs.get("prompt_lang", "") | |
top_k:int = inputs.get("top_k", 5) | |
top_p:float = inputs.get("top_p", 1) | |
temperature:float = inputs.get("temperature", 1) | |
text_split_method:str = inputs.get("text_split_method", "") | |
batch_size = inputs.get("batch_size", 1) | |
batch_threshold = inputs.get("batch_threshold", 0.75) | |
speed_factor = inputs.get("speed_factor", 1.0) | |
split_bucket = inputs.get("split_bucket", True) | |
return_fragment = inputs.get("return_fragment", False) | |
fragment_interval = inputs.get("fragment_interval", 0.3) | |
seed = inputs.get("seed", -1) | |
seed = -1 if seed in ["", None] else seed | |
set_seed(seed) | |
if return_fragment: | |
# split_bucket = False | |
print(i18n("分段返回模式已开启")) | |
if split_bucket: | |
split_bucket = False | |
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) | |
if split_bucket: | |
print(i18n("分桶处理模式已开启")) | |
if fragment_interval<0.01: | |
fragment_interval = 0.01 | |
print(i18n("分段间隔过小,已自动设置为0.01")) | |
no_prompt_text = False | |
if prompt_text in [None, ""]: | |
no_prompt_text = True | |
assert text_lang in self.configs.langauges | |
if not no_prompt_text: | |
assert prompt_lang in self.configs.langauges | |
if ref_audio_path in [None, ""] and \ | |
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spepc"] is None)): | |
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") | |
###### setting reference audio and prompt text preprocessing ######## | |
t0 = ttime() | |
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): | |
self.set_ref_audio(ref_audio_path) | |
if not no_prompt_text: | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "." | |
print(i18n("实际输入的参考文本:"), prompt_text) | |
if self.prompt_cache["prompt_text"] != prompt_text: | |
self.prompt_cache["prompt_text"] = prompt_text | |
self.prompt_cache["prompt_lang"] = prompt_lang | |
phones, bert_features, norm_text = \ | |
self.text_preprocessor.segment_and_extract_feature_for_text( | |
prompt_text, | |
prompt_lang) | |
self.prompt_cache["phones"] = phones | |
self.prompt_cache["bert_features"] = bert_features | |
self.prompt_cache["norm_text"] = norm_text | |
###### text preprocessing ######## | |
t1 = ttime() | |
data:list = None | |
if not return_fragment: | |
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method) | |
if len(data) == 0: | |
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | |
dtype=np.int16) | |
return | |
batch_index_list:list = None | |
data, batch_index_list = self.to_batch(data, | |
prompt_data=self.prompt_cache if not no_prompt_text else None, | |
batch_size=batch_size, | |
threshold=batch_threshold, | |
split_bucket=split_bucket | |
) | |
else: | |
print(i18n("############ 切分文本 ############")) | |
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) | |
data = [] | |
for i in range(len(texts)): | |
if i%batch_size == 0: | |
data.append([]) | |
data[-1].append(texts[i]) | |
def make_batch(batch_texts): | |
batch_data = [] | |
print(i18n("############ 提取文本Bert特征 ############")) | |
for text in tqdm(batch_texts): | |
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang) | |
if phones is None: | |
continue | |
res={ | |
"phones": phones, | |
"bert_features": bert_features, | |
"norm_text": norm_text, | |
} | |
batch_data.append(res) | |
if len(batch_data) == 0: | |
return None | |
batch, _ = self.to_batch(batch_data, | |
prompt_data=self.prompt_cache if not no_prompt_text else None, | |
batch_size=batch_size, | |
threshold=batch_threshold, | |
split_bucket=False | |
) | |
return batch[0] | |
t2 = ttime() | |
try: | |
print("############ 推理 ############") | |
###### inference ###### | |
t_34 = 0.0 | |
t_45 = 0.0 | |
audio = [] | |
for item in data: | |
t3 = ttime() | |
if return_fragment: | |
item = make_batch(item) | |
if item is None: | |
continue | |
batch_phones = item["phones"] | |
batch_phones_len = item["phones_len"] | |
all_phoneme_ids = item["all_phones"] | |
all_phoneme_lens = item["all_phones_len"] | |
all_bert_features = item["all_bert_features"] | |
norm_text = item["norm_text"] | |
# batch_phones = batch_phones.to(self.configs.device) | |
batch_phones_len = batch_phones_len.to(self.configs.device) | |
all_phoneme_ids = all_phoneme_ids.to(self.configs.device) | |
all_phoneme_lens = all_phoneme_lens.to(self.configs.device) | |
all_bert_features = all_bert_features.to(self.configs.device) | |
if self.configs.is_half: | |
all_bert_features = all_bert_features.half() | |
print(i18n("前端处理后的文本(每句):"), norm_text) | |
if no_prompt_text : | |
prompt = None | |
else: | |
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(self.configs.device) | |
with torch.no_grad(): | |
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_lens, | |
prompt, | |
all_bert_features, | |
# prompt_phone_len=ph_offset, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
early_stop_num=self.configs.hz * self.configs.max_sec, | |
) | |
t4 = ttime() | |
t_34 += t4 - t3 | |
refer_audio_spepc:torch.Tensor = self.prompt_cache["refer_spepc"]\ | |
.to(dtype=self.precison, device=self.configs.device) | |
batch_audio_fragment = [] | |
# ## vits并行推理 method 1 | |
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] | |
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device) | |
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0) | |
# max_len = 0 | |
# for i in range(0, len(batch_phones)): | |
# max_len = max(max_len, batch_phones[i].shape[-1]) | |
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len) | |
# batch_phones = batch_phones.to(self.configs.device) | |
# batch_audio_fragment = (self.vits_model.batched_decode( | |
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spepc | |
# )) | |
# ## vits并行推理 method 2 | |
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] | |
upsample_rate = math.prod(self.vits_model.upsample_rates) | |
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))] | |
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))] | |
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) | |
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) | |
_batch_audio_fragment = (self.vits_model.decode( | |
all_pred_semantic, _batch_phones,refer_audio_spepc | |
).detach()[0, 0, :]) | |
audio_frag_end_idx.insert(0, 0) | |
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] | |
# ## vits串行推理 | |
# for i, idx in enumerate(idx_list): | |
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device) | |
# _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次 | |
# audio_fragment =(self.vits_model.decode( | |
# _pred_semantic, phones, refer_audio_spepc | |
# ).detach()[0, 0, :]) | |
# batch_audio_fragment.append( | |
# audio_fragment | |
# ) ###试试重建不带上prompt部分 | |
t5 = ttime() | |
t_45 += t5 - t4 | |
if return_fragment: | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) | |
yield self.audio_postprocess([batch_audio_fragment], | |
self.configs.sampling_rate, | |
None, | |
speed_factor, | |
False, | |
fragment_interval | |
) | |
else: | |
audio.append(batch_audio_fragment) | |
if self.stop_flag: | |
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | |
dtype=np.int16) | |
return | |
if not return_fragment: | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) | |
yield self.audio_postprocess(audio, | |
self.configs.sampling_rate, | |
batch_index_list, | |
speed_factor, | |
split_bucket, | |
fragment_interval | |
) | |
except Exception as e: | |
traceback.print_exc() | |
# 必须返回一个空音频, 否则会导致显存不释放。 | |
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | |
dtype=np.int16) | |
# 重置模型, 否则会导致显存释放不完全。 | |
del self.t2s_model | |
del self.vits_model | |
self.t2s_model = None | |
self.vits_model = None | |
self.init_t2s_weights(self.configs.t2s_weights_path) | |
self.init_vits_weights(self.configs.vits_weights_path) | |
finally: | |
self.empty_cache() | |
def empty_cache(self): | |
try: | |
if "cuda" in str(self.configs.device): | |
torch.cuda.empty_cache() | |
elif str(self.configs.device) == "mps": | |
torch.mps.empty_cache() | |
except: | |
pass | |
def audio_postprocess(self, | |
audio:List[torch.Tensor], | |
sr:int, | |
batch_index_list:list=None, | |
speed_factor:float=1.0, | |
split_bucket:bool=True, | |
fragment_interval:float=0.3 | |
)->tuple[int, np.ndarray]: | |
zero_wav = torch.zeros( | |
int(self.configs.sampling_rate * fragment_interval), | |
dtype=self.precison, | |
device=self.configs.device | |
) | |
for i, batch in enumerate(audio): | |
for j, audio_fragment in enumerate(batch): | |
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音 | |
if max_audio>1: audio_fragment/=max_audio | |
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) | |
audio[i][j] = audio_fragment.cpu().numpy() | |
if split_bucket: | |
audio = self.recovery_order(audio, batch_index_list) | |
else: | |
# audio = [item for batch in audio for item in batch] | |
audio = sum(audio, []) | |
audio = np.concatenate(audio, 0) | |
audio = (audio * 32768).astype(np.int16) | |
try: | |
if speed_factor != 1.0: | |
audio = speed_change(audio, speed=speed_factor, sr=int(sr)) | |
except Exception as e: | |
print(f"Failed to change speed of audio: \n{e}") | |
return sr, audio | |
def speed_change(input_audio:np.ndarray, speed:float, sr:int): | |
# 将 NumPy 数组转换为原始 PCM 流 | |
raw_audio = input_audio.astype(np.int16).tobytes() | |
# 设置 ffmpeg 输入流 | |
input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1) | |
# 变速处理 | |
output_stream = input_stream.filter('atempo', speed) | |
# 输出流到管道 | |
out, _ = ( | |
output_stream.output('pipe:', format='s16le', acodec='pcm_s16le') | |
.run(input=raw_audio, capture_stdout=True, capture_stderr=True) | |
) | |
# 将管道输出解码为 NumPy 数组 | |
processed_audio = np.frombuffer(out, np.int16) | |
return processed_audio |