Spaces:
Runtime error
Runtime error
File size: 96,433 Bytes
d4d4f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "6bYaCABobL5q"
},
"source": [
"##### Copyright 2021 The TensorFlow Authors."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"execution": {
"iopub.execute_input": "2022-12-14T03:38:18.997731Z",
"iopub.status.busy": "2022-12-14T03:38:18.997516Z",
"iopub.status.idle": "2022-12-14T03:38:19.001439Z",
"shell.execute_reply": "2022-12-14T03:38:19.000889Z"
},
"id": "FlUw7tSKbtg4"
},
"outputs": [],
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MfBg1C5NB3X0"
},
"source": [
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://www.tensorflow.org/guide/migrate/validate_correctness\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/guide/migrate/validate_correctness.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://github.com/tensorflow/docs/blob/master/site/en/guide/migrate/validate_correctness.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View on GitHub</a>\n",
" </td>\n",
" <td>\n",
" <a href=\"https://storage.googleapis.com/tensorflow_docs/docs/site/en/guide/migrate/validate_correctness.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yAMJsAn7NDbc"
},
"source": [
"# Validating correctness & numerical equivalence"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vyddl2kckpdN"
},
"source": [
"When migrating your TensorFlow code from TF1.x to TF2, it is a good practice to ensure that your migrated code behaves the same way in TF2 as it did in TF1.x. \n",
"\n",
"This guide covers migration code examples with the `tf.compat.v1.keras.utils.track_tf1_style_variables` modeling shim applied to `tf.keras.layers.Layer` methods. Read the [model mapping guide](./model_mapping.ipynb) to find out more about the TF2 modeling shims.\n",
"\n",
"This guide details approaches you can use to: \n",
"* Validate the correctness of the results obtained from training models using the migrated code \n",
"* Validate the numerical equivalence of your code across TensorFlow versions"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TaYgaekzOAHf"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:19.005343Z",
"iopub.status.busy": "2022-12-14T03:38:19.004839Z",
"iopub.status.idle": "2022-12-14T03:38:21.539848Z",
"shell.execute_reply": "2022-12-14T03:38:21.538733Z"
},
"id": "FkHX044DzVsd"
},
"outputs": [],
"source": [
"!pip uninstall -y -q tensorflow"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:21.544536Z",
"iopub.status.busy": "2022-12-14T03:38:21.543790Z",
"iopub.status.idle": "2022-12-14T03:38:44.840458Z",
"shell.execute_reply": "2022-12-14T03:38:44.839299Z"
},
"id": "M1ZgieHtyzKI"
},
"outputs": [],
"source": [
"# Install tf-nightly as the DeterministicRandomTestTool is available only in\n",
"# Tensorflow 2.8\n",
"!pip install -q tf-nightly"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:44.845262Z",
"iopub.status.busy": "2022-12-14T03:38:44.844580Z",
"iopub.status.idle": "2022-12-14T03:38:46.873821Z",
"shell.execute_reply": "2022-12-14T03:38:46.872724Z"
},
"id": "ohYETq4NCX4J"
},
"outputs": [],
"source": [
"!pip install -q tf_slim"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:46.878200Z",
"iopub.status.busy": "2022-12-14T03:38:46.877941Z",
"iopub.status.idle": "2022-12-14T03:38:49.308586Z",
"shell.execute_reply": "2022-12-14T03:38:49.307853Z"
},
"id": "MFey2HxcktP6"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-12-14 03:38:47.140140: E tensorflow/tsl/lib/monitoring/collection_registry.cc:81] Cannot register 2 metrics with the same name: /tensorflow/core/bfc_allocator_delay\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"import tensorflow.compat.v1 as v1\n",
"\n",
"import numpy as np\n",
"import tf_slim as slim\n",
"import sys\n",
"\n",
"\n",
"from contextlib import contextmanager"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:49.312559Z",
"iopub.status.busy": "2022-12-14T03:38:49.312144Z",
"iopub.status.idle": "2022-12-14T03:38:53.362680Z",
"shell.execute_reply": "2022-12-14T03:38:53.361644Z"
},
"id": "OriidSSAmRtW"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'models'...\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Enumerating objects: 3590, done.\u001b[K\r\n",
"remote: Counting objects: 0% (1/3590)\u001b[K\r",
"remote: Counting objects: 1% (36/3590)\u001b[K\r",
"remote: Counting objects: 2% (72/3590)\u001b[K\r",
"remote: Counting objects: 3% (108/3590)\u001b[K\r",
"remote: Counting objects: 4% (144/3590)\u001b[K\r",
"remote: Counting objects: 5% (180/3590)\u001b[K\r",
"remote: Counting objects: 6% (216/3590)\u001b[K\r",
"remote: Counting objects: 7% (252/3590)\u001b[K\r",
"remote: Counting objects: 8% (288/3590)\u001b[K\r",
"remote: Counting objects: 9% (324/3590)\u001b[K\r",
"remote: Counting objects: 10% (359/3590)\u001b[K\r",
"remote: Counting objects: 11% (395/3590)\u001b[K\r",
"remote: Counting objects: 12% (431/3590)\u001b[K\r",
"remote: Counting objects: 13% (467/3590)\u001b[K\r",
"remote: Counting objects: 14% (503/3590)\u001b[K\r",
"remote: Counting objects: 15% (539/3590)\u001b[K\r",
"remote: Counting objects: 16% (575/3590)\u001b[K\r",
"remote: Counting objects: 17% (611/3590)\u001b[K\r",
"remote: Counting objects: 18% (647/3590)\u001b[K\r",
"remote: Counting objects: 19% (683/3590)\u001b[K\r",
"remote: Counting objects: 20% (718/3590)\u001b[K\r",
"remote: Counting objects: 21% (754/3590)\u001b[K\r",
"remote: Counting objects: 22% (790/3590)\u001b[K\r",
"remote: Counting objects: 23% (826/3590)\u001b[K\r",
"remote: Counting objects: 24% (862/3590)\u001b[K\r",
"remote: Counting objects: 25% (898/3590)\u001b[K\r",
"remote: Counting objects: 26% (934/3590)\u001b[K\r",
"remote: Counting objects: 27% (970/3590)\u001b[K\r",
"remote: Counting objects: 28% (1006/3590)\u001b[K\r",
"remote: Counting objects: 29% (1042/3590)\u001b[K\r",
"remote: Counting objects: 30% (1077/3590)\u001b[K\r",
"remote: Counting objects: 31% (1113/3590)\u001b[K\r",
"remote: Counting objects: 32% (1149/3590)\u001b[K\r",
"remote: Counting objects: 33% (1185/3590)\u001b[K\r",
"remote: Counting objects: 34% (1221/3590)\u001b[K\r",
"remote: Counting objects: 35% (1257/3590)\u001b[K\r",
"remote: Counting objects: 36% (1293/3590)\u001b[K\r",
"remote: Counting objects: 37% (1329/3590)\u001b[K\r",
"remote: Counting objects: 38% (1365/3590)\u001b[K\r",
"remote: Counting objects: 39% (1401/3590)\u001b[K\r",
"remote: Counting objects: 40% (1436/3590)\u001b[K\r",
"remote: Counting objects: 41% (1472/3590)\u001b[K\r",
"remote: Counting objects: 42% (1508/3590)\u001b[K\r",
"remote: Counting objects: 43% (1544/3590)\u001b[K\r",
"remote: Counting objects: 44% (1580/3590)\u001b[K\r",
"remote: Counting objects: 45% (1616/3590)\u001b[K\r",
"remote: Counting objects: 46% (1652/3590)\u001b[K\r",
"remote: Counting objects: 47% (1688/3590)\u001b[K\r",
"remote: Counting objects: 48% (1724/3590)\u001b[K\r",
"remote: Counting objects: 49% (1760/3590)\u001b[K\r",
"remote: Counting objects: 50% (1795/3590)\u001b[K\r",
"remote: Counting objects: 51% (1831/3590)\u001b[K\r",
"remote: Counting objects: 52% (1867/3590)\u001b[K\r",
"remote: Counting objects: 53% (1903/3590)\u001b[K\r",
"remote: Counting objects: 54% (1939/3590)\u001b[K\r",
"remote: Counting objects: 55% (1975/3590)\u001b[K\r",
"remote: Counting objects: 56% (2011/3590)\u001b[K\r",
"remote: Counting objects: 57% (2047/3590)\u001b[K\r",
"remote: Counting objects: 58% (2083/3590)\u001b[K\r",
"remote: Counting objects: 59% (2119/3590)\u001b[K\r",
"remote: Counting objects: 60% (2154/3590)\u001b[K\r",
"remote: Counting objects: 61% (2190/3590)\u001b[K\r",
"remote: Counting objects: 62% (2226/3590)\u001b[K\r",
"remote: Counting objects: 63% (2262/3590)\u001b[K\r",
"remote: Counting objects: 64% (2298/3590)\u001b[K\r",
"remote: Counting objects: 65% (2334/3590)\u001b[K\r",
"remote: Counting objects: 66% (2370/3590)\u001b[K\r",
"remote: Counting objects: 67% (2406/3590)\u001b[K\r",
"remote: Counting objects: 68% (2442/3590)\u001b[K\r",
"remote: Counting objects: 69% (2478/3590)\u001b[K\r",
"remote: Counting objects: 70% (2513/3590)\u001b[K\r",
"remote: Counting objects: 71% (2549/3590)\u001b[K\r",
"remote: Counting objects: 72% (2585/3590)\u001b[K\r",
"remote: Counting objects: 73% (2621/3590)\u001b[K\r",
"remote: Counting objects: 74% (2657/3590)\u001b[K\r",
"remote: Counting objects: 75% (2693/3590)\u001b[K\r",
"remote: Counting objects: 76% (2729/3590)\u001b[K\r",
"remote: Counting objects: 77% (2765/3590)\u001b[K\r",
"remote: Counting objects: 78% (2801/3590)\u001b[K\r",
"remote: Counting objects: 79% (2837/3590)\u001b[K\r",
"remote: Counting objects: 80% (2872/3590)\u001b[K\r",
"remote: Counting objects: 81% (2908/3590)\u001b[K\r",
"remote: Counting objects: 82% (2944/3590)\u001b[K\r",
"remote: Counting objects: 83% (2980/3590)\u001b[K\r",
"remote: Counting objects: 84% (3016/3590)\u001b[K\r",
"remote: Counting objects: 85% (3052/3590)\u001b[K\r",
"remote: Counting objects: 86% (3088/3590)\u001b[K\r",
"remote: Counting objects: 87% (3124/3590)\u001b[K\r",
"remote: Counting objects: 88% (3160/3590)\u001b[K\r",
"remote: Counting objects: 89% (3196/3590)\u001b[K\r",
"remote: Counting objects: 90% (3231/3590)\u001b[K\r",
"remote: Counting objects: 91% (3267/3590)\u001b[K\r",
"remote: Counting objects: 92% (3303/3590)\u001b[K\r",
"remote: Counting objects: 93% (3339/3590)\u001b[K\r",
"remote: Counting objects: 94% (3375/3590)\u001b[K\r",
"remote: Counting objects: 95% (3411/3590)\u001b[K\r",
"remote: Counting objects: 96% (3447/3590)\u001b[K\r",
"remote: Counting objects: 97% (3483/3590)\u001b[K\r",
"remote: Counting objects: 98% (3519/3590)\u001b[K\r",
"remote: Counting objects: 99% (3555/3590)\u001b[K\r",
"remote: Counting objects: 100% (3590/3590)\u001b[K\r",
"remote: Counting objects: 100% (3590/3590), done.\u001b[K\r\n",
"remote: Compressing objects: 0% (1/3005)\u001b[K\r",
"remote: Compressing objects: 1% (31/3005)\u001b[K\r",
"remote: Compressing objects: 2% (61/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 3% (91/3005)\u001b[K\r",
"remote: Compressing objects: 4% (121/3005)\u001b[K\r",
"remote: Compressing objects: 5% (151/3005)\u001b[K\r",
"remote: Compressing objects: 6% (181/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 7% (211/3005)\u001b[K\r",
"remote: Compressing objects: 8% (241/3005)\u001b[K\r",
"remote: Compressing objects: 9% (271/3005)\u001b[K\r",
"remote: Compressing objects: 10% (301/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 11% (331/3005)\u001b[K\r",
"remote: Compressing objects: 12% (361/3005)\u001b[K\r",
"remote: Compressing objects: 13% (391/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 14% (421/3005)\u001b[K\r",
"remote: Compressing objects: 15% (451/3005)\u001b[K\r",
"remote: Compressing objects: 16% (481/3005)\u001b[K\r",
"remote: Compressing objects: 17% (511/3005)\u001b[K\r",
"remote: Compressing objects: 18% (541/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 19% (571/3005)\u001b[K\r",
"remote: Compressing objects: 20% (601/3005)\u001b[K\r",
"remote: Compressing objects: 21% (632/3005)\u001b[K\r",
"remote: Compressing objects: 22% (662/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 23% (692/3005)\u001b[K\r",
"remote: Compressing objects: 24% (722/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 25% (752/3005)\u001b[K\r",
"remote: Compressing objects: 26% (782/3005)\u001b[K\r",
"remote: Compressing objects: 27% (812/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 28% (842/3005)\u001b[K\r",
"remote: Compressing objects: 29% (872/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 30% (902/3005)\u001b[K\r",
"remote: Compressing objects: 31% (932/3005)\u001b[K\r",
"remote: Compressing objects: 32% (962/3005)\u001b[K\r",
"remote: Compressing objects: 33% (992/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 34% (1022/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 35% (1052/3005)\u001b[K\r",
"remote: Compressing objects: 36% (1082/3005)\u001b[K\r",
"remote: Compressing objects: 37% (1112/3005)\u001b[K\r",
"remote: Compressing objects: 38% (1142/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 39% (1172/3005)\u001b[K\r",
"remote: Compressing objects: 40% (1202/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 41% (1233/3005)\u001b[K\r",
"remote: Compressing objects: 42% (1263/3005)\u001b[K\r",
"remote: Compressing objects: 43% (1293/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 44% (1323/3005)\u001b[K\r",
"remote: Compressing objects: 45% (1353/3005)\u001b[K\r",
"remote: Compressing objects: 46% (1383/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 47% (1413/3005)\u001b[K\r",
"remote: Compressing objects: 48% (1443/3005)\u001b[K\r",
"remote: Compressing objects: 49% (1473/3005)\u001b[K\r",
"remote: Compressing objects: 50% (1503/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 51% (1533/3005)\u001b[K\r",
"remote: Compressing objects: 52% (1563/3005)\u001b[K\r",
"remote: Compressing objects: 53% (1593/3005)\u001b[K\r",
"remote: Compressing objects: 54% (1623/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 55% (1653/3005)\u001b[K\r",
"remote: Compressing objects: 56% (1683/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 57% (1713/3005)\u001b[K\r",
"remote: Compressing objects: 58% (1743/3005)\u001b[K\r",
"remote: Compressing objects: 59% (1773/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 60% (1803/3005)\u001b[K\r",
"remote: Compressing objects: 61% (1834/3005)\u001b[K\r",
"remote: Compressing objects: 62% (1864/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 63% (1894/3005)\u001b[K\r",
"remote: Compressing objects: 64% (1924/3005)\u001b[K\r",
"remote: Compressing objects: 65% (1954/3005)\u001b[K\r",
"remote: Compressing objects: 66% (1984/3005)\u001b[K\r",
"remote: Compressing objects: 67% (2014/3005)\u001b[K\r",
"remote: Compressing objects: 68% (2044/3005)\u001b[K\r",
"remote: Compressing objects: 69% (2074/3005)\u001b[K\r",
"remote: Compressing objects: 70% (2104/3005)\u001b[K\r",
"remote: Compressing objects: 71% (2134/3005)\u001b[K\r",
"remote: Compressing objects: 72% (2164/3005)\u001b[K\r",
"remote: Compressing objects: 73% (2194/3005)\u001b[K\r",
"remote: Compressing objects: 73% (2207/3005)\u001b[K\r",
"remote: Compressing objects: 74% (2224/3005)\u001b[K\r",
"remote: Compressing objects: 75% (2254/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 76% (2284/3005)\u001b[K\r",
"remote: Compressing objects: 77% (2314/3005)\u001b[K\r",
"remote: Compressing objects: 78% (2344/3005)\u001b[K\r",
"remote: Compressing objects: 79% (2374/3005)\u001b[K\r",
"remote: Compressing objects: 80% (2404/3005)\u001b[K\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"remote: Compressing objects: 81% (2435/3005)\u001b[K\r",
"remote: Compressing objects: 82% (2465/3005)\u001b[K\r",
"remote: Compressing objects: 83% (2495/3005)\u001b[K\r",
"remote: Compressing objects: 84% (2525/3005)\u001b[K\r",
"remote: Compressing objects: 85% (2555/3005)\u001b[K\r",
"remote: Compressing objects: 86% (2585/3005)\u001b[K\r",
"remote: Compressing objects: 87% (2615/3005)\u001b[K\r",
"remote: Compressing objects: 88% (2645/3005)\u001b[K\r",
"remote: Compressing objects: 89% (2675/3005)\u001b[K\r",
"remote: Compressing objects: 90% (2705/3005)\u001b[K\r",
"remote: Compressing objects: 91% (2735/3005)\u001b[K\r",
"remote: Compressing objects: 92% (2765/3005)\u001b[K\r",
"remote: Compressing objects: 93% (2795/3005)\u001b[K\r",
"remote: Compressing objects: 94% (2825/3005)\u001b[K\r",
"remote: Compressing objects: 95% (2855/3005)\u001b[K\r",
"remote: Compressing objects: 96% (2885/3005)\u001b[K\r",
"remote: Compressing objects: 97% (2915/3005)\u001b[K\r",
"remote: Compressing objects: 98% (2945/3005)\u001b[K\r",
"remote: Compressing objects: 99% (2975/3005)\u001b[K\r",
"remote: Compressing objects: 100% (3005/3005)\u001b[K\r",
"remote: Compressing objects: 100% (3005/3005), done.\u001b[K\r\n",
"Receiving objects: 0% (1/3590)\r",
"Receiving objects: 1% (36/3590)\r",
"Receiving objects: 2% (72/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 3% (108/3590)\r",
"Receiving objects: 4% (144/3590)\r",
"Receiving objects: 5% (180/3590)\r",
"Receiving objects: 6% (216/3590)\r",
"Receiving objects: 7% (252/3590)\r",
"Receiving objects: 8% (288/3590)\r",
"Receiving objects: 9% (324/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 10% (359/3590)\r",
"Receiving objects: 11% (395/3590)\r",
"Receiving objects: 12% (431/3590)\r",
"Receiving objects: 13% (467/3590)\r",
"Receiving objects: 14% (503/3590)\r",
"Receiving objects: 15% (539/3590)\r",
"Receiving objects: 16% (575/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 17% (611/3590)\r",
"Receiving objects: 18% (647/3590)\r",
"Receiving objects: 19% (683/3590)\r",
"Receiving objects: 20% (718/3590)\r",
"Receiving objects: 21% (754/3590)\r",
"Receiving objects: 22% (790/3590)\r",
"Receiving objects: 23% (826/3590)\r",
"Receiving objects: 24% (862/3590)\r",
"Receiving objects: 25% (898/3590)\r",
"Receiving objects: 26% (934/3590)\r",
"Receiving objects: 27% (970/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 28% (1006/3590)\r",
"Receiving objects: 29% (1042/3590)\r",
"Receiving objects: 30% (1077/3590)\r",
"Receiving objects: 31% (1113/3590)\r",
"Receiving objects: 32% (1149/3590)\r",
"Receiving objects: 33% (1185/3590)\r",
"Receiving objects: 34% (1221/3590)\r",
"Receiving objects: 35% (1257/3590)\r",
"Receiving objects: 36% (1293/3590)\r",
"Receiving objects: 37% (1329/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 38% (1365/3590)\r",
"Receiving objects: 39% (1401/3590)\r",
"Receiving objects: 40% (1436/3590)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 41% (1472/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 42% (1508/3590), 4.73 MiB | 9.45 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 43% (1544/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 44% (1580/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 45% (1616/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 46% (1652/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 47% (1688/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 48% (1724/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 49% (1760/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 50% (1795/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 51% (1831/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 52% (1867/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 53% (1903/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 54% (1939/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 55% (1975/3590), 4.73 MiB | 9.45 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 56% (2011/3590), 4.73 MiB | 9.45 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 57% (2047/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 58% (2083/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 59% (2119/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 60% (2154/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 61% (2190/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 62% (2226/3590), 4.73 MiB | 9.45 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 63% (2262/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 64% (2298/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 65% (2334/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 66% (2370/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 67% (2406/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 68% (2442/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 69% (2478/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 70% (2513/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 71% (2549/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 72% (2585/3590), 4.73 MiB | 9.45 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 73% (2621/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 74% (2657/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 75% (2693/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 76% (2729/3590), 4.73 MiB | 9.45 MiB/s\r",
"Receiving objects: 76% (2763/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 77% (2765/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 78% (2801/3590), 27.43 MiB | 27.42 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 79% (2837/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 80% (2872/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 81% (2908/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 82% (2944/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 83% (2980/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 84% (3016/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 85% (3052/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 86% (3088/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 87% (3124/3590), 27.43 MiB | 27.42 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 88% (3160/3590), 27.43 MiB | 27.42 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 89% (3196/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 90% (3231/3590), 27.43 MiB | 27.42 MiB/s\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Receiving objects: 91% (3267/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 92% (3303/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 93% (3339/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 94% (3375/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 95% (3411/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 96% (3447/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 97% (3483/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 98% (3519/3590), 27.43 MiB | 27.42 MiB/s\r",
"remote: Total 3590 (delta 943), reused 1501 (delta 531), pack-reused 0\u001b[K\r\n",
"Receiving objects: 99% (3555/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 100% (3590/3590), 27.43 MiB | 27.42 MiB/s\r",
"Receiving objects: 100% (3590/3590), 47.08 MiB | 35.58 MiB/s, done.\r\n",
"Resolving deltas: 0% (0/943)\r",
"Resolving deltas: 1% (16/943)\r",
"Resolving deltas: 3% (31/943)\r",
"Resolving deltas: 5% (49/943)\r",
"Resolving deltas: 6% (57/943)\r",
"Resolving deltas: 7% (68/943)\r",
"Resolving deltas: 8% (76/943)\r",
"Resolving deltas: 9% (86/943)\r",
"Resolving deltas: 10% (95/943)\r",
"Resolving deltas: 11% (104/943)\r",
"Resolving deltas: 12% (116/943)\r",
"Resolving deltas: 13% (127/943)\r",
"Resolving deltas: 14% (134/943)\r",
"Resolving deltas: 15% (145/943)\r",
"Resolving deltas: 16% (152/943)\r",
"Resolving deltas: 17% (166/943)\r",
"Resolving deltas: 18% (176/943)\r",
"Resolving deltas: 19% (183/943)\r",
"Resolving deltas: 20% (193/943)\r",
"Resolving deltas: 21% (200/943)\r",
"Resolving deltas: 22% (208/943)\r",
"Resolving deltas: 23% (218/943)\r",
"Resolving deltas: 24% (227/943)\r",
"Resolving deltas: 25% (237/943)\r",
"Resolving deltas: 26% (250/943)\r",
"Resolving deltas: 27% (257/943)\r",
"Resolving deltas: 29% (281/943)\r",
"Resolving deltas: 30% (284/943)\r",
"Resolving deltas: 31% (295/943)\r",
"Resolving deltas: 32% (303/943)\r",
"Resolving deltas: 33% (313/943)\r",
"Resolving deltas: 34% (321/943)\r",
"Resolving deltas: 35% (335/943)\r",
"Resolving deltas: 36% (342/943)\r",
"Resolving deltas: 37% (353/943)\r",
"Resolving deltas: 38% (359/943)\r",
"Resolving deltas: 39% (368/943)\r",
"Resolving deltas: 40% (378/943)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Resolving deltas: 41% (387/943)\r",
"Resolving deltas: 42% (399/943)\r",
"Resolving deltas: 43% (406/943)\r",
"Resolving deltas: 45% (426/943)\r",
"Resolving deltas: 46% (440/943)\r",
"Resolving deltas: 47% (447/943)\r",
"Resolving deltas: 48% (454/943)\r",
"Resolving deltas: 49% (463/943)\r",
"Resolving deltas: 50% (472/943)\r",
"Resolving deltas: 51% (481/943)\r",
"Resolving deltas: 52% (491/943)\r",
"Resolving deltas: 53% (500/943)\r",
"Resolving deltas: 54% (510/943)\r",
"Resolving deltas: 55% (519/943)\r",
"Resolving deltas: 56% (533/943)\r",
"Resolving deltas: 57% (538/943)\r",
"Resolving deltas: 58% (550/943)\r",
"Resolving deltas: 59% (557/943)\r",
"Resolving deltas: 60% (568/943)\r",
"Resolving deltas: 61% (579/943)\r",
"Resolving deltas: 62% (585/943)\r",
"Resolving deltas: 63% (595/943)\r",
"Resolving deltas: 64% (604/943)\r",
"Resolving deltas: 65% (613/943)\r",
"Resolving deltas: 66% (624/943)\r",
"Resolving deltas: 67% (632/943)\r",
"Resolving deltas: 68% (644/943)\r",
"Resolving deltas: 69% (651/943)\r",
"Resolving deltas: 70% (668/943)\r",
"Resolving deltas: 72% (680/943)\r",
"Resolving deltas: 73% (694/943)\r",
"Resolving deltas: 74% (699/943)\r",
"Resolving deltas: 75% (708/943)\r",
"Resolving deltas: 76% (724/943)\r",
"Resolving deltas: 77% (733/943)\r",
"Resolving deltas: 78% (741/943)\r",
"Resolving deltas: 79% (747/943)\r",
"Resolving deltas: 80% (756/943)\r",
"Resolving deltas: 81% (764/943)\r",
"Resolving deltas: 82% (774/943)\r",
"Resolving deltas: 83% (783/943)\r",
"Resolving deltas: 84% (793/943)\r",
"Resolving deltas: 85% (802/943)\r",
"Resolving deltas: 86% (811/943)\r",
"Resolving deltas: 87% (826/943)\r",
"Resolving deltas: 88% (831/943)\r",
"Resolving deltas: 89% (842/943)\r",
"Resolving deltas: 90% (852/943)\r",
"Resolving deltas: 91% (862/943)\r",
"Resolving deltas: 92% (868/943)\r",
"Resolving deltas: 93% (877/943)\r",
"Resolving deltas: 94% (888/943)\r",
"Resolving deltas: 95% (897/943)\r",
"Resolving deltas: 96% (908/943)\r",
"Resolving deltas: 97% (915/943)\r",
"Resolving deltas: 98% (925/943)\r",
"Resolving deltas: 99% (936/943)\r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Resolving deltas: 100% (943/943)\r",
"Resolving deltas: 100% (943/943), done.\r\n"
]
}
],
"source": [
"!git clone --depth=1 https://github.com/tensorflow/models.git\n",
"import models.research.slim.nets.inception_resnet_v2 as inception"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TRacYNxnN-nk"
},
"source": [
"If you're putting a nontrivial chunk of forward pass code into the shim, you want to know that it is behaving the same way as it did in TF1.x. For example, consider trying to put an entire TF-Slim Inception-Resnet-v2 model into the shim as such:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:53.366962Z",
"iopub.status.busy": "2022-12-14T03:38:53.366681Z",
"iopub.status.idle": "2022-12-14T03:38:53.370866Z",
"shell.execute_reply": "2022-12-14T03:38:53.370295Z"
},
"id": "IijQZtxeaErg"
},
"outputs": [],
"source": [
"# TF1 Inception resnet v2 forward pass based on slim layers\n",
"def inception_resnet_v2(inputs, num_classes, is_training):\n",
" with slim.arg_scope(\n",
" inception.inception_resnet_v2_arg_scope(batch_norm_scale=True)):\n",
" return inception.inception_resnet_v2(inputs, num_classes, is_training=is_training)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:53.374046Z",
"iopub.status.busy": "2022-12-14T03:38:53.373505Z",
"iopub.status.idle": "2022-12-14T03:38:53.697683Z",
"shell.execute_reply": "2022-12-14T03:38:53.697035Z"
},
"id": "Z_-Oxg9OlSd4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /tmpfs/tmp/ipykernel_118303/2131234657.py:8: The name tf.keras.utils.track_tf1_style_variables is deprecated. Please use tf.compat.v1.keras.utils.track_tf1_style_variables instead.\n",
"\n"
]
}
],
"source": [
"class InceptionResnetV2(tf.keras.layers.Layer):\n",
" \"\"\"Slim InceptionResnetV2 forward pass as a Keras layer\"\"\"\n",
"\n",
" def __init__(self, num_classes, **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.num_classes = num_classes\n",
"\n",
" @tf.compat.v1.keras.utils.track_tf1_style_variables\n",
" def call(self, inputs, training=None):\n",
" is_training = training or False \n",
" \n",
" # Slim does not accept `None` as a value for is_training,\n",
" # Keras will still pass `None` to layers to construct functional models\n",
" # without forcing the layer to always be in training or in inference.\n",
" # However, `None` is generally considered to run layers in inference.\n",
" \n",
" with slim.arg_scope(\n",
" inception.inception_resnet_v2_arg_scope(batch_norm_scale=True)):\n",
" return inception.inception_resnet_v2(\n",
" inputs, self.num_classes, is_training=is_training)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EqFmpktjlvh9"
},
"source": [
"As it so happens, this layer actually works perfectly fine out of the box (complete with accurate regularization loss tracking). \n",
"\n",
"However, this is not something you want to take for granted. Follow the below steps to verify that it is actually behaving as it did in TF1.x, down to observing perfect numerical equivalence. These steps can also help you triangulate what part of the forward pass is causing a divergence from TF1.x (identify if the divergence arises in the model forward pass as opposed to a different part of the model)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mmgubd9vkevp"
},
"source": [
"## Step 1: Verify variables are only created once\n",
"\n",
"The very first thing you should verify is that you have correctly built the model in a way that reuses variables in each call rather than accidentally creating and using new variables each time. For example, if your model creates a new Keras layer or calls `tf.Variable` in each forward pass call then it is most likely failing to capture variables and creating new ones each time.\n",
"\n",
"Below are two context manager scopes you can use to detect when your model is creating new variables and debug which part of the model is doing it."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:53.701383Z",
"iopub.status.busy": "2022-12-14T03:38:53.700896Z",
"iopub.status.idle": "2022-12-14T03:38:53.707635Z",
"shell.execute_reply": "2022-12-14T03:38:53.707033Z"
},
"id": "VMTfTXC0zW97"
},
"outputs": [],
"source": [
"@contextmanager\n",
"def assert_no_variable_creations():\n",
" \"\"\"Assert no variables are created in this context manager scope.\"\"\"\n",
" def invalid_variable_creator(next_creator, **kwargs):\n",
" raise ValueError(\"Attempted to create a new variable instead of reusing an existing one. Args: {}\".format(kwargs))\n",
"\n",
" with tf.variable_creator_scope(invalid_variable_creator):\n",
" yield\n",
"\n",
"@contextmanager\n",
"def catch_and_raise_created_variables():\n",
" \"\"\"Raise all variables created within this context manager scope (if any).\"\"\"\n",
" created_vars = []\n",
" def variable_catcher(next_creator, **kwargs):\n",
" var = next_creator(**kwargs)\n",
" created_vars.append(var)\n",
" return var\n",
"\n",
" with tf.variable_creator_scope(variable_catcher):\n",
" yield\n",
" if created_vars:\n",
" raise ValueError(\"Created vars:\", created_vars)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WOKUtciktQqv"
},
"source": [
"The first scope (`assert_no_variable_creations()`) will raise an error immediately once you try creating a variable within the scope. This allows you to inspect the stacktrace (and use interactive debugging) to figure out exactly what lines of code created a variable instead of reusing an existing one.\n",
"\n",
"The second scope (`catch_and_raise_created_variables()`) will raise an exception at the end of the scope if any variables ended up being created. This exception will include the list of all variables created in the scope. This is useful for figuring out what the set of all weights your model is creating is in case you can spot general patterns. However, it is less useful for identifying the exact lines of code where those variables got created.\n",
"\n",
"Use both scopes below to verify that the shim-based InceptionResnetV2 layer does not create any new variables after the first call (presumably reusing them)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:38:53.711113Z",
"iopub.status.busy": "2022-12-14T03:38:53.710699Z",
"iopub.status.idle": "2022-12-14T03:39:03.248779Z",
"shell.execute_reply": "2022-12-14T03:39:03.248055Z"
},
"id": "O9FAGotiuLbK"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py:2212: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.\n",
" warnings.warn('`layer.apply` is deprecated and '\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/keras/legacy_tf_layers/core.py:332: UserWarning: `tf.layers.flatten` is deprecated and will be removed in a future version. Please use `tf.keras.layers.Flatten` instead.\n",
" warnings.warn('`tf.layers.flatten` is deprecated and '\n"
]
}
],
"source": [
"model = InceptionResnetV2(1000)\n",
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"inputs = tf.ones( (1, height, width, 3))\n",
"# Create all weights on the first call\n",
"model(inputs)\n",
"\n",
"# Verify that no new weights are created in followup calls\n",
"with assert_no_variable_creations():\n",
" model(inputs)\n",
"with catch_and_raise_created_variables():\n",
" model(inputs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9ylT-EIhu1lK"
},
"source": [
"In the example below, observe how these decorators work on a layer that incorrectly creates new weights each time instead of reusing existing ones."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:03.253141Z",
"iopub.status.busy": "2022-12-14T03:39:03.252469Z",
"iopub.status.idle": "2022-12-14T03:39:03.256619Z",
"shell.execute_reply": "2022-12-14T03:39:03.256047Z"
},
"id": "gXqhPQWWtMAw"
},
"outputs": [],
"source": [
"class BrokenScalingLayer(tf.keras.layers.Layer):\n",
" \"\"\"Scaling layer that incorrectly creates new weights each time:\"\"\"\n",
"\n",
" @tf.compat.v1.keras.utils.track_tf1_style_variables\n",
" def call(self, inputs):\n",
" var = tf.Variable(initial_value=2.0)\n",
" bias = tf.Variable(initial_value=2.0, name='bias')\n",
" return inputs * var + bias"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:03.260192Z",
"iopub.status.busy": "2022-12-14T03:39:03.259627Z",
"iopub.status.idle": "2022-12-14T03:39:03.277902Z",
"shell.execute_reply": "2022-12-14T03:39:03.277304Z"
},
"id": "ztUKlMdGvHSq"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/tmpfs/tmp/ipykernel_118303/1128777590.py\", line 7, in <module>\n",
" model(inputs)\n",
" File \"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/utils/traceback_utils.py\", line 70, in error_handler\n",
" raise e.with_traceback(filtered_tb) from None\n",
" File \"/tmpfs/tmp/ipykernel_118303/3224979076.py\", line 6, in call\n",
" var = tf.Variable(initial_value=2.0)\n",
" File \"/tmpfs/tmp/ipykernel_118303/1829430118.py\", line 5, in invalid_variable_creator\n",
" raise ValueError(\"Attempted to create a new variable instead of reusing an existing one. Args: {}\".format(kwargs))\n",
"ValueError: Exception encountered when calling layer 'broken_scaling_layer' (type BrokenScalingLayer).\n",
"\n",
"Attempted to create a new variable instead of reusing an existing one. Args: {'initial_value': 2.0, 'trainable': None, 'validate_shape': True, 'caching_device': None, 'name': None, 'variable_def': None, 'dtype': None, 'import_scope': None, 'constraint': None, 'synchronization': <VariableSynchronization.AUTO: 0>, 'aggregation': <VariableAggregation.NONE: 0>, 'shape': None, 'experimental_enable_variable_lifting': None}\n",
"\n",
"Call arguments received by layer 'broken_scaling_layer' (type BrokenScalingLayer):\n",
" • inputs=tf.Tensor(shape=(1, 299, 299, 3), dtype=float32)\n"
]
}
],
"source": [
"model = BrokenScalingLayer()\n",
"inputs = tf.ones( (1, height, width, 3))\n",
"model(inputs)\n",
"\n",
"try:\n",
" with assert_no_variable_creations():\n",
" model(inputs)\n",
"except ValueError as err:\n",
" import traceback\n",
" traceback.print_exc()\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:03.281111Z",
"iopub.status.busy": "2022-12-14T03:39:03.280539Z",
"iopub.status.idle": "2022-12-14T03:39:03.289140Z",
"shell.execute_reply": "2022-12-14T03:39:03.288582Z"
},
"id": "6VyfMJ50vZqZ"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('Created vars:', [<tf.Variable 'broken_scaling_layer_1/Variable:0' shape=() dtype=float32, numpy=2.0>, <tf.Variable 'broken_scaling_layer_1/bias:0' shape=() dtype=float32, numpy=2.0>])\n"
]
}
],
"source": [
"model = BrokenScalingLayer()\n",
"inputs = tf.ones( (1, height, width, 3))\n",
"model(inputs)\n",
"\n",
"try:\n",
" with catch_and_raise_created_variables():\n",
" model(inputs)\n",
"except ValueError as err:\n",
" print(err)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JDaiTArcv49M"
},
"source": [
"You can fix the layer by making sure it only creates the weights once and then reuses them each time."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:03.292412Z",
"iopub.status.busy": "2022-12-14T03:39:03.291983Z",
"iopub.status.idle": "2022-12-14T03:39:03.301456Z",
"shell.execute_reply": "2022-12-14T03:39:03.300908Z"
},
"id": "FN1Oa10iviv8"
},
"outputs": [],
"source": [
"class FixedScalingLayer(tf.keras.layers.Layer):\n",
" \"\"\"Scaling layer that incorrectly creates new weights each time:\"\"\"\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.var = None\n",
" self.bias = None\n",
"\n",
" @tf.compat.v1.keras.utils.track_tf1_style_variables\n",
" def call(self, inputs):\n",
" if self.var is None:\n",
" self.var = tf.Variable(initial_value=2.0)\n",
" self.bias = tf.Variable(initial_value=2.0, name='bias')\n",
" return inputs * self.var + self.bias\n",
"\n",
"model = FixedScalingLayer()\n",
"inputs = tf.ones( (1, height, width, 3))\n",
"model(inputs)\n",
"\n",
"with assert_no_variable_creations():\n",
" model(inputs)\n",
"with catch_and_raise_created_variables():\n",
" model(inputs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MuiZZ7ktwCcn"
},
"source": [
"### Troubleshooting\n",
"\n",
"Here are some common reasons why your model might accidentally be creating new weights instead of reusing existing ones:\n",
"\n",
"1. It uses an explicit `tf.Variable` call without reusing already-created `tf.Variables`. Fix this by first checking if it has not been created then reusing the existing ones.\n",
"2. It creates a Keras layer or model directly in the forward pass each time (as opposed to `tf.compat.v1.layers`). Fix this by first checking if it has not been created then reusing the existing ones.\n",
"3. It is built on top of `tf.compat.v1.layers` but fails to assign all `compat.v1.layers` an explicit name or to wrap your `compat.v1.layer` usage inside of a named `variable_scope`, causing the autogenerated layer names to increment in each model call. Fix this by putting a named `tf.compat.v1.variable_scope` inside your shim-decorated method that wraps all of your `tf.compat.v1.layers` usage."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V4iZLV9BnwKM"
},
"source": [
"## Step 2: Check that variable counts, names, and shapes match\n",
"\n",
"The second step is to make sure your layer running in TF2 creates the same number of weights, with the same shapes, as the corresponding code does in TF1.x.\n",
"\n",
"You can do a mix of manually checking them to see that they match, and doing the checks programmatically in a unit test as shown below."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:03.305013Z",
"iopub.status.busy": "2022-12-14T03:39:03.304461Z",
"iopub.status.idle": "2022-12-14T03:39:21.004861Z",
"shell.execute_reply": "2022-12-14T03:39:21.004090Z"
},
"id": "m_aqag5fpun5"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1694: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.\n",
" warnings.warn('`layer.apply` is deprecated and '\n"
]
}
],
"source": [
"# Build the forward pass inside a TF1.x graph, and \n",
"# get the counts, shapes, and names of the variables\n",
"graph = tf.Graph()\n",
"with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" height, width = 299, 299\n",
" num_classes = 1000\n",
" inputs = tf.ones( (1, height, width, 3))\n",
"\n",
" out, endpoints = inception_resnet_v2(inputs, num_classes, is_training=False)\n",
"\n",
" tf1_variable_names_and_shapes = {\n",
" var.name: (var.trainable, var.shape) for var in tf.compat.v1.global_variables()}\n",
" num_tf1_variables = len(tf.compat.v1.global_variables())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WT1-cm99vfNU"
},
"source": [
"Next, do the same for the shim-wrapped layer in TF2.\n",
"Notice that the model is also called multiple times before grabbing the weights. This is done to effectively test for variable reuse."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:21.008893Z",
"iopub.status.busy": "2022-12-14T03:39:21.008637Z",
"iopub.status.idle": "2022-12-14T03:39:24.226380Z",
"shell.execute_reply": "2022-12-14T03:39:24.225669Z"
},
"id": "S7ND-lBSqmnE"
},
"outputs": [],
"source": [
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"model = InceptionResnetV2(num_classes)\n",
"# The weights will not be created until you call the model\n",
"\n",
"inputs = tf.ones( (1, height, width, 3))\n",
"# Call the model multiple times before checking the weights, to verify variables\n",
"# get reused rather than accidentally creating additional variables\n",
"out, endpoints = model(inputs, training=False)\n",
"out, endpoints = model(inputs, training=False)\n",
"\n",
"# Grab the name: shape mapping and the total number of variables separately,\n",
"# because in TF2 variables can be created with the same name\n",
"num_tf2_variables = len(model.variables)\n",
"tf2_variable_names_and_shapes = {\n",
" var.name: (var.trainable, var.shape) for var in model.variables}"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:24.230091Z",
"iopub.status.busy": "2022-12-14T03:39:24.229816Z",
"iopub.status.idle": "2022-12-14T03:39:24.233961Z",
"shell.execute_reply": "2022-12-14T03:39:24.233379Z"
},
"id": "pY2P_4wqsOYw"
},
"outputs": [],
"source": [
"# Verify that the variable counts, names, and shapes all match:\n",
"assert num_tf1_variables == num_tf2_variables\n",
"assert tf1_variable_names_and_shapes == tf2_variable_names_and_shapes"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N4YKJzSVwWkc"
},
"source": [
"The shim-based InceptionResnetV2 layer passes this test. However, in the case where they don't match, you can run it through a diff (text or other) to see where the differences are.\n",
"\n",
"This can provide a clue as to what part of the model isn't behaving as expected. With eager execution you can use pdb, interactive debugging, and breakpoints to dig into the parts of the model that seem suspicious, and debug what is going wrong in more depth."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2gYrt-_0xpRM"
},
"source": [
"### Troubleshooting\n",
"\n",
"* Pay close attention to the names of any variables created directly by explicit `tf.Variable` calls and Keras layers/models as their variable name generation semantics may differ slightly between TF1.x graphs and TF2 functionality such as eager execution and `tf.function` even if everything else is working properly. If this is the case for you, adjust your test to account for any slightly different naming semantics.\n",
"\n",
"* You may sometimes find that the `tf.Variable`s, `tf.keras.layers.Layer`s, or `tf.keras.Model`s created in your training loop's forward pass are missing from your TF2 variables list even if they were captured by the variables collection in TF1.x. Fix this by assigning the variables/layers/models that your forward pass creates to instance attributes in your model. See [here](https://www.tensorflow.org/guide/keras/custom_layers_and_models) for more info."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fOQJ_hUGnzkq"
},
"source": [
"## Step 3: Reset all variables, check numerical equivalence with all randomness disabled\n",
"\n",
"The next step is to verify numerical equivalence for both the actual outputs and the regularization loss tracking when you fix the model such that there is no random number generation involved (such as during inference).\n",
"\n",
"The exact way to do this may depend on your specific model, but in most models (such as this one), you can do this by:\n",
"1. Initializing the weights to the same value with no randomness. This can be done by resetting them to a fixed value after they have been created.\n",
"2. Running the model in inference mode to avoid triggering any dropout layers which can be sources of randomness.\n",
"\n",
"The following code demonstrates how you can compare the TF1.x and TF2 results this way."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:24.237784Z",
"iopub.status.busy": "2022-12-14T03:39:24.237280Z",
"iopub.status.idle": "2022-12-14T03:39:49.563479Z",
"shell.execute_reply": "2022-12-14T03:39:49.562787Z"
},
"id": "kL4PzD2Cxzmp"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: 0.001182976\n"
]
},
{
"data": {
"text/plain": [
"array([0.00299837, 0.00299837, 0.00299837, 0.00299837, 0.00299837],\n",
" dtype=float32)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph = tf.Graph()\n",
"with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" height, width = 299, 299\n",
" num_classes = 1000\n",
" inputs = tf.ones( (1, height, width, 3))\n",
"\n",
" out, endpoints = inception_resnet_v2(inputs, num_classes, is_training=False)\n",
"\n",
" # Rather than running the global variable initializers,\n",
" # reset all variables to a constant value\n",
" var_reset = tf.group([var.assign(tf.ones_like(var) * 0.001) for var in tf.compat.v1.global_variables()])\n",
" sess.run(var_reset)\n",
"\n",
" # Grab the outputs & regularization loss\n",
" reg_losses = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)\n",
" tf1_regularization_loss = sess.run(tf.math.add_n(reg_losses))\n",
" tf1_output = sess.run(out)\n",
"\n",
"print(\"Regularization loss:\", tf1_regularization_loss)\n",
"tf1_output[0][:5]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IKkoM_x72rUa"
},
"source": [
"Get the TF2 results."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:49.567413Z",
"iopub.status.busy": "2022-12-14T03:39:49.567128Z",
"iopub.status.idle": "2022-12-14T03:39:53.933510Z",
"shell.execute_reply": "2022-12-14T03:39:53.932839Z"
},
"id": "kb086gJwzsNo"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: tf.Tensor(0.0011829757, shape=(), dtype=float32)\n"
]
},
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(5,), dtype=float32, numpy=\n",
"array([0.00299837, 0.00299837, 0.00299837, 0.00299837, 0.00299837],\n",
" dtype=float32)>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"model = InceptionResnetV2(num_classes)\n",
"\n",
"inputs = tf.ones((1, height, width, 3))\n",
"# Call the model once to create the weights\n",
"out, endpoints = model(inputs, training=False)\n",
"\n",
"# Reset all variables to the same fixed value as above, with no randomness\n",
"for var in model.variables:\n",
" var.assign(tf.ones_like(var) * 0.001)\n",
"tf2_output, endpoints = model(inputs, training=False)\n",
"\n",
"# Get the regularization loss\n",
"tf2_regularization_loss = tf.math.add_n(model.losses)\n",
"\n",
"print(\"Regularization loss:\", tf2_regularization_loss)\n",
"tf2_output[0][:5]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:53.936827Z",
"iopub.status.busy": "2022-12-14T03:39:53.936548Z",
"iopub.status.idle": "2022-12-14T03:39:53.939905Z",
"shell.execute_reply": "2022-12-14T03:39:53.939251Z"
},
"id": "CUfWqlgIK6ej"
},
"outputs": [],
"source": [
"# Create a dict of tolerance values\n",
"tol_dict={'rtol':1e-06, 'atol':1e-05}"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:53.943322Z",
"iopub.status.busy": "2022-12-14T03:39:53.942814Z",
"iopub.status.idle": "2022-12-14T03:39:53.947107Z",
"shell.execute_reply": "2022-12-14T03:39:53.946575Z"
},
"id": "R-C07eTo0WTr"
},
"outputs": [],
"source": [
"# Verify that the regularization loss and output both match\n",
"# when we fix the weights and avoid randomness by running inference:\n",
"np.testing.assert_allclose(tf1_regularization_loss, tf2_regularization_loss.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(tf1_output, tf2_output.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5UUq_Fuc2zDO"
},
"source": [
"The numbers match between TF1.x and TF2 when you remove sources of randomness, and the TF2-compatible `InceptionResnetV2` layer passes the test.\n",
"\n",
"If you are observing the results diverging for your own models, you can use printing or pdb and interactive debugging to identify where and why the results start to diverge. Eager execution can make this significantly easier. You can also use an ablation approach to run only small portions of the model on fixed intermediate inputs and isolate where the divergence happens.\n",
"\n",
"Conveniently, many slim nets (and other models) also expose intermediate endpoints that you can probe."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "btRbak-0ou15"
},
"source": [
"## Step 4: Align random number generation, check numerical equivalence in both training and inference\n",
"\n",
"The final step is to verify that the TF2 model numerically matches the TF1.x model, even when accounting for random number generation in variable initialization and in the forward pass itself (such as dropout layers during the forward pass).\n",
"\n",
"You can do this by using the testing tool below to make random number generation semantics match between TF1.x graphs/sessions and eager execution."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jYq-JHiC39QC"
},
"source": [
"TF1 legacy graphs/sessions and TF2 eager execution use different stateful random number generation semantics.\n",
"\n",
"In `tf.compat.v1.Session`s, if no seeds are specified, the random number generation depends on how many operations are in the graph at the time when the random operation is added, and how many times the graph is run. In eager execution, stateful random number generation depends on the global seed, the operation random seed, and how many times the operation with the operation with the given random seed is run. See \n",
"`tf.random.set_seed` for more info."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BQbb8Hyk5YVi"
},
"source": [
"The following [`v1.keras.utils.DeterministicRandomTestTool`](https://www.tensorflow.org/api_docs/python/tf/compat/v1/keras/utils/DeterministicRandomTestTool) class provides a context manager `scope()` that can make stateful random operations use the same seed across both TF1 graphs/sessions and eager execution.\n",
"\n",
"The tool provides two testing modes: \n",
"1. `constant` which uses the same seed for every single operation no matter how many times it has been called and,\n",
"2. `num_random_ops` which uses the number of previously-observed stateful random operations as the operation seed.\n",
"\n",
"This applies both to the stateful random operations used for creating and initializing variables, and to the stateful random operations used in computation (such as for dropout layers)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MoyZenhGHDA-"
},
"source": [
"Generate three random tensors to show how to use this tool to make stateful random number generation match between sessions and eager execution."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:53.950786Z",
"iopub.status.busy": "2022-12-14T03:39:53.950284Z",
"iopub.status.idle": "2022-12-14T03:39:53.989064Z",
"shell.execute_reply": "2022-12-14T03:39:53.988502Z"
},
"id": "DDFfjrbXEWED"
},
"outputs": [
{
"data": {
"text/plain": [
"(array([[2.5063772],\n",
" [2.7488918],\n",
" [1.4839486]], dtype=float32),\n",
" array([[2.5063772, 2.7488918, 1.4839486],\n",
" [1.5633398, 2.1358476, 1.3693532],\n",
" [0.3598416, 1.8287641, 2.5314465]], dtype=float32),\n",
" array([[2.5063772, 2.7488918, 1.4839486],\n",
" [1.5633398, 2.1358476, 1.3693532],\n",
" [0.3598416, 1.8287641, 2.5314465]], dtype=float32))"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool()\n",
"with random_tool.scope():\n",
" graph = tf.Graph()\n",
" with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
" c = tf.random.uniform(shape=(3,3))\n",
" c = c * 3\n",
" graph_a, graph_b, graph_c = sess.run([a, b, c])\n",
"\n",
"graph_a, graph_b, graph_c"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:53.992308Z",
"iopub.status.busy": "2022-12-14T03:39:53.991806Z",
"iopub.status.idle": "2022-12-14T03:39:54.011113Z",
"shell.execute_reply": "2022-12-14T03:39:54.010470Z"
},
"id": "o9bkdPuTFpYr"
},
"outputs": [
{
"data": {
"text/plain": [
"(<tf.Tensor: shape=(3, 1), dtype=float32, numpy=\n",
" array([[2.5063772],\n",
" [2.7488918],\n",
" [1.4839486]], dtype=float32)>,\n",
" <tf.Tensor: shape=(3, 3), dtype=float32, numpy=\n",
" array([[2.5063772, 2.7488918, 1.4839486],\n",
" [1.5633398, 2.1358476, 1.3693532],\n",
" [0.3598416, 1.8287641, 2.5314465]], dtype=float32)>,\n",
" <tf.Tensor: shape=(3, 3), dtype=float32, numpy=\n",
" array([[2.5063772, 2.7488918, 1.4839486],\n",
" [1.5633398, 2.1358476, 1.3693532],\n",
" [0.3598416, 1.8287641, 2.5314465]], dtype=float32)>)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool()\n",
"with random_tool.scope():\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
" c = tf.random.uniform(shape=(3,3))\n",
" c = c * 3\n",
"\n",
"a, b, c"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.014331Z",
"iopub.status.busy": "2022-12-14T03:39:54.013797Z",
"iopub.status.idle": "2022-12-14T03:39:54.017855Z",
"shell.execute_reply": "2022-12-14T03:39:54.017276Z"
},
"id": "qRJYFydsGIbF"
},
"outputs": [],
"source": [
"# Demonstrate that the generated random numbers match\n",
"np.testing.assert_allclose(graph_a, a.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(graph_b, b.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(graph_c, c.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "J8IWCnS-WFrB"
},
"source": [
"However, notice that in `constant` mode, because `b` and `c` were generated with the same seed and have the same shape, they will have exactly the same values."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.021063Z",
"iopub.status.busy": "2022-12-14T03:39:54.020543Z",
"iopub.status.idle": "2022-12-14T03:39:54.024066Z",
"shell.execute_reply": "2022-12-14T03:39:54.023479Z"
},
"id": "IdxV89q2WPid"
},
"outputs": [],
"source": [
"np.testing.assert_allclose(b.numpy(), c.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vQTm7joHHh57"
},
"source": [
"### Trace order\n",
"If you are worried about some random numbers matching in `constant` mode reducing your confidence in your numerical equivalence test (for example if several weights take on the same initializations), you can use the `num_random_ops` mode to avoid this. In the `num_random_ops` mode, the generated random numbers will depend on the ordering of random ops in the program."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.027409Z",
"iopub.status.busy": "2022-12-14T03:39:54.026970Z",
"iopub.status.idle": "2022-12-14T03:39:54.054591Z",
"shell.execute_reply": "2022-12-14T03:39:54.054025Z"
},
"id": "L-AeD148VygJ"
},
"outputs": [
{
"data": {
"text/plain": [
"(array([[2.5063772],\n",
" [2.7488918],\n",
" [1.4839486]], dtype=float32),\n",
" array([[0.45038545, 1.9197761 , 2.4536333 ],\n",
" [1.0371652 , 2.9898582 , 1.924583 ],\n",
" [0.25679827, 1.6579313 , 2.8418403 ]], dtype=float32),\n",
" array([[2.9634383 , 1.0862181 , 2.6042497 ],\n",
" [0.70099247, 2.3920312 , 1.0470468 ],\n",
" [0.18173039, 0.8359269 , 1.0508587 ]], dtype=float32))"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" graph = tf.Graph()\n",
" with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
" c = tf.random.uniform(shape=(3,3))\n",
" c = c * 3\n",
" graph_a, graph_b, graph_c = sess.run([a, b, c])\n",
"\n",
"graph_a, graph_b, graph_c"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.057715Z",
"iopub.status.busy": "2022-12-14T03:39:54.057212Z",
"iopub.status.idle": "2022-12-14T03:39:54.070419Z",
"shell.execute_reply": "2022-12-14T03:39:54.069817Z"
},
"id": "CedD41NuVygK"
},
"outputs": [
{
"data": {
"text/plain": [
"(<tf.Tensor: shape=(3, 1), dtype=float32, numpy=\n",
" array([[2.5063772],\n",
" [2.7488918],\n",
" [1.4839486]], dtype=float32)>,\n",
" <tf.Tensor: shape=(3, 3), dtype=float32, numpy=\n",
" array([[0.45038545, 1.9197761 , 2.4536333 ],\n",
" [1.0371652 , 2.9898582 , 1.924583 ],\n",
" [0.25679827, 1.6579313 , 2.8418403 ]], dtype=float32)>,\n",
" <tf.Tensor: shape=(3, 3), dtype=float32, numpy=\n",
" array([[2.9634383 , 1.0862181 , 2.6042497 ],\n",
" [0.70099247, 2.3920312 , 1.0470468 ],\n",
" [0.18173039, 0.8359269 , 1.0508587 ]], dtype=float32)>)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
" c = tf.random.uniform(shape=(3,3))\n",
" c = c * 3\n",
"\n",
"a, b, c"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.073744Z",
"iopub.status.busy": "2022-12-14T03:39:54.073122Z",
"iopub.status.idle": "2022-12-14T03:39:54.077214Z",
"shell.execute_reply": "2022-12-14T03:39:54.076668Z"
},
"id": "5We2xSnLVygL"
},
"outputs": [],
"source": [
"# Demonstrate that the generated random numbers match\n",
"np.testing.assert_allclose(graph_a, a.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(graph_b, b.numpy(), **tol_dict )\n",
"np.testing.assert_allclose(graph_c, c.numpy(), **tol_dict)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.080256Z",
"iopub.status.busy": "2022-12-14T03:39:54.079793Z",
"iopub.status.idle": "2022-12-14T03:39:54.082990Z",
"shell.execute_reply": "2022-12-14T03:39:54.082356Z"
},
"id": "BBFG1xehWneM"
},
"outputs": [],
"source": [
"# Demonstrate that with the 'num_random_ops' mode,\n",
"# b & c took on different values even though\n",
"# their generated shape was the same\n",
"assert not np.allclose(b.numpy(), c.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OfX_VexcVqSA"
},
"source": [
"However, notice that in this mode random generation is sensitive to program order, and so the following generated random numbers do not match."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.086042Z",
"iopub.status.busy": "2022-12-14T03:39:54.085613Z",
"iopub.status.idle": "2022-12-14T03:39:54.102152Z",
"shell.execute_reply": "2022-12-14T03:39:54.101559Z"
},
"id": "cZt__ElEIDl_"
},
"outputs": [],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
"\n",
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" b_prime = tf.random.uniform(shape=(3,3))\n",
" b_prime = b_prime * 3\n",
" a_prime = tf.random.uniform(shape=(3,1))\n",
" a_prime = a_prime * 3\n",
"\n",
"assert not np.allclose(a.numpy(), a_prime.numpy())\n",
"assert not np.allclose(b.numpy(), b_prime.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nHhOLHyQIkAe"
},
"source": [
"To allow for debugging variations due to tracing order, `DeterministicRandomTestTool` in `num_random_ops` mode allows you to see how many random operations have been traced with the `operation_seed` property."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.105583Z",
"iopub.status.busy": "2022-12-14T03:39:54.105101Z",
"iopub.status.idle": "2022-12-14T03:39:54.114616Z",
"shell.execute_reply": "2022-12-14T03:39:54.114047Z"
},
"id": "33RCSICuJEyV"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n",
"2\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" print(random_tool.operation_seed)\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" print(random_tool.operation_seed)\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
" print(random_tool.operation_seed)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bkQD3NpOMxIv"
},
"source": [
"If you need to account for varying trace order in your tests, you can even set the auto-incrementing `operation_seed` explicitly. For example, you can use this to make random number generation match across two different program orders."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.117828Z",
"iopub.status.busy": "2022-12-14T03:39:54.117272Z",
"iopub.status.idle": "2022-12-14T03:39:54.134599Z",
"shell.execute_reply": "2022-12-14T03:39:54.134050Z"
},
"id": "6W4sS_wOM8CH"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"1\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" print(random_tool.operation_seed)\n",
" a = tf.random.uniform(shape=(3,1))\n",
" a = a * 3\n",
" print(random_tool.operation_seed)\n",
" b = tf.random.uniform(shape=(3,3))\n",
" b = b * 3\n",
"\n",
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" random_tool.operation_seed = 1\n",
" b_prime = tf.random.uniform(shape=(3,3))\n",
" b_prime = b_prime * 3\n",
" random_tool.operation_seed = 0\n",
" a_prime = tf.random.uniform(shape=(3,1))\n",
" a_prime = a_prime * 3\n",
"\n",
"np.testing.assert_allclose(a.numpy(), a_prime.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(b.numpy(), b_prime.numpy(), **tol_dict)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bP5Kx1OcNbvM"
},
"source": [
"However, `DeterministicRandomTestTool` disallows reusing already-used operation seeds, so make sure the auto-incremented sequences cannot overlap. This is because eager execution generates different numbers for follow-on usages of the same operation seed while TF1 graphs and sessions do not, so raising an error helps keep session and eager stateful random number generation in line."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.138009Z",
"iopub.status.busy": "2022-12-14T03:39:54.137470Z",
"iopub.status.idle": "2022-12-14T03:39:54.147707Z",
"shell.execute_reply": "2022-12-14T03:39:54.147126Z"
},
"id": "GmBgg5hzNa5H"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This `DeterministicRandomTestTool` object is trying to re-use the already-used operation seed 1. It cannot guarantee random numbers will match between eager and sessions when an operation seed is reused. You most likely set `operation_seed` explicitly but used a value that caused the naturally-incrementing operation seed sequences to overlap with an already-used seed.\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" random_tool.operation_seed = 1\n",
" b_prime = tf.random.uniform(shape=(3,3))\n",
" b_prime = b_prime * 3\n",
" random_tool.operation_seed = 0\n",
" a_prime = tf.random.uniform(shape=(3,1))\n",
" a_prime = a_prime * 3\n",
" try:\n",
" c = tf.random.uniform(shape=(3,1))\n",
" raise RuntimeError(\"An exception should have been raised before this, \" +\n",
" \"because the auto-incremented operation seed will \" +\n",
" \"overlap an already-used value\")\n",
" except ValueError as err:\n",
" print(err)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U-bLOeCmOn-4"
},
"source": [
"### Verifying Inference\n",
"\n",
"You can now use the `DeterministicRandomTestTool` to make sure the `InceptionResnetV2` model matches in inference, even when using the random weight initialization. For a stronger test condition due to matching program order, use the `num_random_ops` mode."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:39:54.151016Z",
"iopub.status.busy": "2022-12-14T03:39:54.150495Z",
"iopub.status.idle": "2022-12-14T03:40:15.741319Z",
"shell.execute_reply": "2022-12-14T03:40:15.740627Z"
},
"id": "8TWOrflkPa7T"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: 1.2254326\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" graph = tf.Graph()\n",
" with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" height, width = 299, 299\n",
" num_classes = 1000\n",
" inputs = tf.ones( (1, height, width, 3))\n",
"\n",
" out, endpoints = inception_resnet_v2(inputs, num_classes, is_training=False)\n",
"\n",
" # Initialize the variables\n",
" sess.run(tf.compat.v1.global_variables_initializer())\n",
"\n",
" # Grab the outputs & regularization loss\n",
" reg_losses = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)\n",
" tf1_regularization_loss = sess.run(tf.math.add_n(reg_losses))\n",
" tf1_output = sess.run(out)\n",
"\n",
" print(\"Regularization loss:\", tf1_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:15.744904Z",
"iopub.status.busy": "2022-12-14T03:40:15.744601Z",
"iopub.status.idle": "2022-12-14T03:40:18.420342Z",
"shell.execute_reply": "2022-12-14T03:40:18.419659Z"
},
"id": "Qcx6ur4KPMI1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: tf.Tensor(1.2254325, shape=(), dtype=float32)\n"
]
}
],
"source": [
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" model = InceptionResnetV2(num_classes)\n",
"\n",
" inputs = tf.ones((1, height, width, 3))\n",
" tf2_output, endpoints = model(inputs, training=False)\n",
"\n",
" # Grab the regularization loss as well\n",
" tf2_regularization_loss = tf.math.add_n(model.losses)\n",
"\n",
"print(\"Regularization loss:\", tf2_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:18.423973Z",
"iopub.status.busy": "2022-12-14T03:40:18.423477Z",
"iopub.status.idle": "2022-12-14T03:40:18.427976Z",
"shell.execute_reply": "2022-12-14T03:40:18.427410Z"
},
"id": "m_SS2b6qPFl1"
},
"outputs": [],
"source": [
"# Verify that the regularization loss and output both match\n",
"# when using the DeterministicRandomTestTool:\n",
"np.testing.assert_allclose(tf1_regularization_loss, tf2_regularization_loss.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(tf1_output, tf2_output.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TKSktIRaP-5b"
},
"source": [
"### Verifying Training\n",
"\n",
"Because `DeterministicRandomTestTool` works for *all* stateful random operations (including both weight initialization and computation such as dropout layers), you can use it to verify the models match in training mode as well. You can again use the `num_random_ops` mode because the program order of the stateful random ops matches."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:18.431282Z",
"iopub.status.busy": "2022-12-14T03:40:18.430734Z",
"iopub.status.idle": "2022-12-14T03:40:42.196309Z",
"shell.execute_reply": "2022-12-14T03:40:42.195578Z"
},
"id": "nMBFVa1kQTJH"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/layers/normalization/batch_normalization.py:581: _colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Colocations handled automatically by placer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: 1.22548\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" graph = tf.Graph()\n",
" with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" height, width = 299, 299\n",
" num_classes = 1000\n",
" inputs = tf.ones( (1, height, width, 3))\n",
"\n",
" out, endpoints = inception_resnet_v2(inputs, num_classes, is_training=True)\n",
"\n",
" # Initialize the variables\n",
" sess.run(tf.compat.v1.global_variables_initializer())\n",
"\n",
" # Grab the outputs & regularization loss\n",
" reg_losses = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)\n",
" tf1_regularization_loss = sess.run(tf.math.add_n(reg_losses))\n",
" tf1_output = sess.run(out)\n",
"\n",
" print(\"Regularization loss:\", tf1_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:42.199907Z",
"iopub.status.busy": "2022-12-14T03:40:42.199657Z",
"iopub.status.idle": "2022-12-14T03:40:45.015643Z",
"shell.execute_reply": "2022-12-14T03:40:45.014921Z"
},
"id": "-jlBkwI5QTJI"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: tf.Tensor(1.2254798, shape=(), dtype=float32)\n"
]
}
],
"source": [
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"random_tool = v1.keras.utils.DeterministicRandomTestTool(mode='num_random_ops')\n",
"with random_tool.scope():\n",
" model = InceptionResnetV2(num_classes)\n",
"\n",
" inputs = tf.ones((1, height, width, 3))\n",
" tf2_output, endpoints = model(inputs, training=True)\n",
"\n",
" # Grab the regularization loss as well\n",
" tf2_regularization_loss = tf.math.add_n(model.losses)\n",
"\n",
"print(\"Regularization loss:\", tf2_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:45.019242Z",
"iopub.status.busy": "2022-12-14T03:40:45.018962Z",
"iopub.status.idle": "2022-12-14T03:40:45.023395Z",
"shell.execute_reply": "2022-12-14T03:40:45.022782Z"
},
"id": "IL9mjTLnQTJJ"
},
"outputs": [],
"source": [
"# Verify that the regularization loss and output both match\n",
"# when using the DeterministicRandomTestTool\n",
"np.testing.assert_allclose(tf1_regularization_loss, tf2_regularization_loss.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(tf1_output, tf2_output.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uJTZvmfnQqZH"
},
"source": [
"You have now verified that the `InceptionResnetV2` model running eagerly with decorators around `tf.keras.layers.Layer` numerically matches the slim network running in TF1 graphs and sessions."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xpOAei5vRAPa"
},
"source": [
"Note: When using the `DeterministicRandomTestTool` in `num_random_ops` mode, it is suggested you directly use and call the `tf.keras.layers.Layer` method decorator when testing for numerical equivalence. Embedding it within a Keras functional model or other Keras models can produce differences in stateful random operation tracing order that can be tricky to reason about or match exactly when comparing TF1.x graphs/sessions and eager execution. \n",
"\n",
"For example, calling the `InceptionResnetV2` layer directly with `training=True` interleaves variable initialization with the dropout order according to the network creation order.\n",
"\n",
"On the other hand, first putting the `tf.keras.layers.Layer` decorator in a Keras functional model and only then calling the model with `training=True` is equivalent to initializing all variables then using the dropout layer. This produces a different tracing order and a different set of random numbers.\n",
"\n",
"However, the default `mode='constant'` is not sensitive to these differences in tracing order and will pass without extra work even when embedding the layer in a Keras functional model."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:40:45.026795Z",
"iopub.status.busy": "2022-12-14T03:40:45.026567Z",
"iopub.status.idle": "2022-12-14T03:41:08.547454Z",
"shell.execute_reply": "2022-12-14T03:41:08.546677Z"
},
"id": "0dSR4ZNvYNYm"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: 1.2239965\n"
]
}
],
"source": [
"random_tool = v1.keras.utils.DeterministicRandomTestTool()\n",
"with random_tool.scope():\n",
" graph = tf.Graph()\n",
" with graph.as_default(), tf.compat.v1.Session(graph=graph) as sess:\n",
" height, width = 299, 299\n",
" num_classes = 1000\n",
" inputs = tf.ones( (1, height, width, 3))\n",
"\n",
" out, endpoints = inception_resnet_v2(inputs, num_classes, is_training=True)\n",
"\n",
" # Initialize the variables\n",
" sess.run(tf.compat.v1.global_variables_initializer())\n",
"\n",
" # Get the outputs & regularization losses\n",
" reg_losses = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES)\n",
" tf1_regularization_loss = sess.run(tf.math.add_n(reg_losses))\n",
" tf1_output = sess.run(out)\n",
"\n",
" print(\"Regularization loss:\", tf1_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:41:08.551835Z",
"iopub.status.busy": "2022-12-14T03:41:08.551188Z",
"iopub.status.idle": "2022-12-14T03:41:16.167387Z",
"shell.execute_reply": "2022-12-14T03:41:16.166695Z"
},
"id": "iMPMMnPtYUY7"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/keras/engine/base_layer.py:1345: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.\n",
" warnings.warn('`layer.updates` will be removed in a future version. '\n",
"/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/legacy_tf_layers/base.py:627: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.\n",
" self.updates, tf.compat.v1.GraphKeys.UPDATE_OPS\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Regularization loss: tf.Tensor(1.2239964, shape=(), dtype=float32)\n"
]
}
],
"source": [
"height, width = 299, 299\n",
"num_classes = 1000\n",
"\n",
"random_tool = v1.keras.utils.DeterministicRandomTestTool()\n",
"with random_tool.scope():\n",
" keras_input = tf.keras.Input(shape=(height, width, 3))\n",
" layer = InceptionResnetV2(num_classes)\n",
" model = tf.keras.Model(inputs=keras_input, outputs=layer(keras_input))\n",
"\n",
" inputs = tf.ones((1, height, width, 3))\n",
" tf2_output, endpoints = model(inputs, training=True)\n",
"\n",
" # Get the regularization loss\n",
" tf2_regularization_loss = tf.math.add_n(model.losses)\n",
"\n",
"print(\"Regularization loss:\", tf2_regularization_loss)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"execution": {
"iopub.execute_input": "2022-12-14T03:41:16.171428Z",
"iopub.status.busy": "2022-12-14T03:41:16.170699Z",
"iopub.status.idle": "2022-12-14T03:41:16.175329Z",
"shell.execute_reply": "2022-12-14T03:41:16.174712Z"
},
"id": "jf46KUVyYUY8"
},
"outputs": [],
"source": [
"# Verify that the regularization loss and output both match\n",
"# when using the DeterministicRandomTestTool\n",
"np.testing.assert_allclose(tf1_regularization_loss, tf2_regularization_loss.numpy(), **tol_dict)\n",
"np.testing.assert_allclose(tf1_output, tf2_output.numpy(), **tol_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hWXHjtkiZ09V"
},
"source": [
"## Step 3b or 4b (optional): Testing with pre-existing checkpoints\n",
"\n",
"After step 3 or step 4 above, it can be useful to run your numerical equivalence tests when starting from pre-existing name-based checkpoints if you have some. This can test both that your legacy checkpoint loading is working correctly and that the model itself is working right. The [Reusing TF1.x checkpoints guide](./reuse_checkpoints.ipynb) covers how to reuse your pre-existing TF1.x checkpoints and transfer them over to TF2 checkpoints.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v6i3MFmGcxYx"
},
"source": [
"## Additional Testing & Troubleshooting\n",
"\n",
"As you add more numerical equivalence tests, you may also choose to add a test that verifies your gradient computation (or even your optimizer updates) match.\n",
"\n",
"Backpropagation and gradient computation are more prone to floating point numerical instabilities than model forward passes. This means that as your equivalence tests cover more non-isolated parts of your training, you may begin to see non-trivial numerics differences between running fully eagerly and your TF1 graphs. This may be caused by TensorFlow's graph optimizations that do things such as replace subexpressions in a graph with fewer mathematical operations.\n",
"\n",
"To isolate whether this is likely to be the case, you can compare your TF1 code to TF2 computation happening inside of a `tf.function` (which applies graph optimization passes like your TF1 graph) rather than to a purely eager computation. Alternatively, you can try using `tf.config.optimizer.set_experimental_options` to disable optimization passes such as `\"arithmetic_optimization\"` before your TF1 computation to see if the result ends up numerically closer to your TF2 computation results. In your actual training runs it is recommended you use `tf.function` with optimization passes enabled for performance reasons, but you may find it useful to disable them in your numerical equivalence unit tests.\n",
"\n",
"Similarly, you may also find that `tf.compat.v1.train` optimizers and TF2 optimizers have slightly different floating point numerics properties than TF2 optimizers, even if the mathematical formulas they are representing are the same. This is less likely to be an issue in your training runs, but it may require a higher numerical tolerance in equivalence unit tests."
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "validate_correctness.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|