Upload 2 files
Browse files- app.py +57 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import onnxruntime as ort
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# download the model from Hugging Face
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained('answerdotai/ModernBERT-large')
|
16 |
+
if os.path.exists("model_f16.onnx"):
|
17 |
+
st.write("Model already downloaded.")
|
18 |
+
else:
|
19 |
+
st.write("Downloading model...")
|
20 |
+
model_path = hf_hub_download(
|
21 |
+
repo_id="bakhil-aissa/anti_prompt_injection",
|
22 |
+
filename="model_f16.onnx",
|
23 |
+
local_dir_use_symlinks=False,
|
24 |
+
)
|
25 |
+
|
26 |
+
st.title("Anti Prompt Injection Detection")
|
27 |
+
|
28 |
+
|
29 |
+
# Load the ONNX model
|
30 |
+
sess = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
31 |
+
# Define the input form
|
32 |
+
def predict ( text ):
|
33 |
+
enc = tokenizer([text], return_tensors="np", truncation=True, max_length=2048)
|
34 |
+
inputs = {"input_ids": enc["input_ids"], "attention_mask": enc["attention_mask"]}
|
35 |
+
logits = sess.run(["logits"], inputs)[0]
|
36 |
+
exp = np.exp(logits)
|
37 |
+
probs = exp / exp.sum(axis=1, keepdims=True) # shape (1, num_classes)
|
38 |
+
return probs
|
39 |
+
|
40 |
+
st.subheader("Enter your text to check for prompt injection:")
|
41 |
+
text_input = st.text_area("Text Input", height=200)
|
42 |
+
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
43 |
+
if st.button("Check"):
|
44 |
+
if text_input:
|
45 |
+
try:
|
46 |
+
with st.spinner("Processing..."):
|
47 |
+
# Call the predict function
|
48 |
+
probs = predict(text_input)
|
49 |
+
jailbreak_prob = float(probs[0][1]) # index into batch
|
50 |
+
is_jailbreak = jailbreak_prob >= confidence_threshold
|
51 |
+
|
52 |
+
st.success(f"Is Jailbreak: {is_jailbreak}")
|
53 |
+
st.info(f"Jailbreak Probability: {jailbreak_prob:.4f}")
|
54 |
+
except Exception as e:
|
55 |
+
st.error(f"Error: {str(e)}")
|
56 |
+
else:
|
57 |
+
st.warning("Please enter some text to check.")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.116.1
|
2 |
+
huggingface_hub==0.33.5
|
3 |
+
numpy==1.21.5
|
4 |
+
onnxruntime==1.22.0
|
5 |
+
pandas==2.3.1
|
6 |
+
pydantic==2.11.7
|
7 |
+
streamlit==1.44.1
|
8 |
+
transformers==4.53.3
|