Spaces:
Sleeping
Sleeping
File size: 5,403 Bytes
2812d44 22fa207 2812d44 22fa207 7d1ba20 2812d44 1f80462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
from io import BytesIO
from pathlib import Path
from random import shuffle
import cv2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
from mini_resnet import CustomResNet
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from torchvision import transforms as T
mean = (0.49139968, 0.48215841, 0.44653091)
std = (0.24703223, 0.24348513, 0.26158784)
transforms = T.Compose([T.ToTensor(), T.Normalize(mean=mean, std=std)])
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")
softmax = torch.nn.Softmax(dim=0)
model = CustomResNet()
model.load_state_dict(torch.load("model_weights/weights.pt", map_location=torch.device("cpu")))
model.eval()
misclf_path = "images/miss_classified"
mis_classified_imgs = list(Path(misclf_path).glob("*"))
def get_traget_layer(block: str, layer: int):
layer_num = 0 if layer == 0 else -1
if block == "block1":
return model.layer1[layer_num]
if block == "block2":
return model.layer2[layer_num]
if block == "block3":
return model.layer3[layer_num]
default_cam = GradCAM(model=model, target_layers=[get_traget_layer("block3", -1)])
def make_image(p: Path | str, pred: str, label: str):
im = cv2.imread(str(p))
im = cv2.resize(im, (64, 64))
plt.imshow(im)
plt.title(f"{pred} / {label}")
plt.axis("off")
buffer = BytesIO()
plt.savefig(buffer, format="png")
buffer.seek(0)
img_array = np.frombuffer(buffer.getvalue(), dtype=np.uint8)
buffer.close()
# Decode the image array using OpenCV
im = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
return im
@torch.inference_mode()
def predict_img(img: np.ndarray, top_k: int = 10):
preds = model(img)
preds = softmax(preds.flatten())
preds = {classes[i]: float(preds[i]) for i in range(10)}
preds = {
k: v for k, v in sorted(preds.items(), key=lambda item: item[1], reverse=True)[:top_k]
}
return preds
def display_cam(cam: GradCAM, org_img: np.ndarray, img: torch.Tensor, transparency: float):
grayscale_cam = cam(input_tensor=img, targets=None)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(
org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency
)
return visualization
def inference(
org_img: np.ndarray,
top_k: int,
show_cam: str,
num_cam_imgs: int,
cam_block: str,
target_layer_num: int,
transparency: float,
show_misclf: str,
num_misclf: int,
):
input_img = transforms(org_img)
input_img = input_img.unsqueeze(0)
preds = predict_img(input_img, top_k)
org_img = display_cam(default_cam, org_img, input_img, transparency)
shuffle(mis_classified_imgs)
cam_outputs = []
if show_cam:
img_list = []
target_layers = [get_traget_layer(cam_block, target_layer_num)]
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
for p in mis_classified_imgs[:num_cam_imgs]:
im = cv2.imread(str(p))
inp_im = transforms(im)
inp_im = inp_im.unsqueeze(0)
grayscale_cam = cam(input_tensor=inp_im, targets=None)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(
im / 255, grayscale_cam, use_rgb=True, image_weight=transparency
)
cam_outputs.append(visualization)
del cam, img_list
misclf_images_output = []
if show_misclf:
img_list = []
gt = []
for p in mis_classified_imgs[:num_misclf]:
img_list.append(transforms(Image.open(p).convert("RGB")))
gt.append(p.name.split("_")[0])
misclf_out = softmax(model(torch.stack(img_list))).argmax(dim=1).tolist()
del img_list
for imp, pred, label in zip(mis_classified_imgs[:num_misclf], misclf_out, gt):
pred = classes[pred]
misclf_images_output.append(make_image(imp, pred, label))
return org_img, preds, cam_outputs, misclf_images_output
title = "Session 12 Assignment"
description = "Experimented the custom resnet model to classify the images"
# examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
demo = gr.Interface(
inference,
inputs=[
gr.Image(shape=(32, 32), label="Input Image"),
gr.Slider(1, 10, value=3, step=1, label="Top K predictions"),
gr.Checkbox(label="Show Grad Cam"),
gr.Slider(1, 20, value=5, step=1, label="Number of images"),
gr.Radio(label="Which Block?", choices=["block1", "block2", "block3"]),
gr.Slider(0, 1, value=1, step=1, label="Which Layer?"),
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
gr.Checkbox(label="Show Misclassified Images"),
gr.Slider(1, 20, value=5, step=5, label="Number of Misclassification Images"),
],
outputs=[
gr.Image(shape=(32, 32), label="Output", width=128, height=128),
"label",
gr.Gallery(label="GradCAM Output"),
gr.Gallery(
label="Misclassified Images Pred/G.T.",
columns=[2],
rows=[2],
object_fit="contain",
height="auto",
),
],
title=title,
description=description,
# examples=examples,
)
demo.launch() |