Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# from common import BaseNet | |
class ResBlock(nn.Module): | |
def __init__(self, in_planes: int, out_planes: int, stride: int = 1, drop: float = 0) -> None: | |
super().__init__() | |
self.dropout = nn.Dropout2d(drop) | |
self.conv1 = nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(out_planes) | |
self.conv2 = nn.Conv2d( | |
out_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False, | |
) | |
self.bn2 = nn.BatchNorm2d(out_planes) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.dropout(out) | |
out = self.bn2(self.conv2(out)) | |
out += x | |
out = F.relu(out) | |
out = self.dropout(out) | |
return out | |
class CustomResNet(nn.Module): | |
def __init__(self, drop: float = 0, num_classes: int = 10) -> None: | |
super().__init__() | |
# perp layer | |
self.perlayer = nn.Sequential( | |
nn.Conv2d(3, 64, 3, padding=1, bias=False), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Dropout2d(drop), | |
) | |
self.layer1 = nn.Sequential( | |
nn.Conv2d(64, 128, 3, padding=1, bias=False), | |
nn.MaxPool2d(2, 2), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Dropout2d(drop), | |
ResBlock(128, 128, drop=drop), | |
) | |
self.layer2 = nn.Sequential( | |
nn.Conv2d(128, 256, 3, padding=1, bias=False), | |
nn.MaxPool2d(2, 2), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.Dropout2d(drop), | |
) | |
self.layer3 = nn.Sequential( | |
nn.Conv2d(256, 512, 3, padding=1, bias=False), | |
nn.MaxPool2d(2, 2), | |
nn.BatchNorm2d(512), | |
nn.ReLU(), | |
nn.Dropout2d(drop), | |
ResBlock(512, 512, drop=drop), | |
) | |
self.pool = nn.MaxPool2d(4) | |
self.out = nn.Conv2d(512, num_classes, 1, bias=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.perlayer(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.pool(x) | |
x = self.out(x) | |
return x.view(-1, 10) |