Spaces:
Building
Building
File size: 9,904 Bytes
f6b56a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from gyraudio.audio_separation.experiment_tracking.experiments import get_experience
from gyraudio.audio_separation.parser import shared_parser
from gyraudio.audio_separation.properties import TEST, NAME, SHORT_NAME, CURRENT_EPOCH, SNR_FILTER
from gyraudio.default_locations import EXPERIMENT_STORAGE_ROOT
from gyraudio.audio_separation.experiment_tracking.storage import load_checkpoint
from gyraudio.audio_separation.experiment_tracking.storage import get_output_folder
from gyraudio.audio_separation.metrics import snr
from gyraudio.io.dump import Dump
from pathlib import Path
import sys
import torch
from tqdm import tqdm
import torchaudio
import pandas as pd
from typing import List
# Files paths
DEFAULT_RECORD_FILE = "infer_record.csv" # Store the characteristics of the inference record file
DEFAULT_EVALUATION_FILE = "eval_df.csv" # Store the characteristics of the inference record file
# Record keys
NBATCH = "nb_batch"
BEST_SNR = "best_snr"
BEST_SAVE_SNR = "best_save_snr"
WORST_SNR = "worst_snr"
WORST_SAVE_SNR = "worst_save_snr"
RECORD_KEYS = [NAME, SHORT_NAME, CURRENT_EPOCH, NBATCH, SNR_FILTER, BEST_SAVE_SNR, BEST_SNR, WORST_SAVE_SNR, WORST_SNR]
# Exaluation keys
SAVE_IDX = "save_idx"
SNR_IN = "snr_in"
SNR_OUT = "snr_out"
EVAL_KEYS = [SAVE_IDX, SNR_IN, SNR_OUT]
def load_file(path: Path, keys: List[str]) -> pd.DataFrame:
if not (path.exists()):
df = pd.DataFrame(columns=keys)
df.to_csv(path)
return pd.read_csv(path)
def launch_infer(exp: int, snr_filter: list = None, device: str = "cuda", model_dir: Path = None,
output_dir: Path = EXPERIMENT_STORAGE_ROOT, force_reload=False, max_batches=None,
ext=".wav"):
# Load experience
if snr_filter is not None:
snr_filter = sorted(snr_filter)
short_name, model, config, dl = get_experience(exp, snr_filter_test=snr_filter)
exists, exp_dir = get_output_folder(config, root_dir=model_dir, override=False)
assert exp_dir.exists(), f"Experiment {short_name} does not exist in {model_dir}"
model.eval()
model.to(device)
model, optimizer, epoch, config_checkpt = load_checkpoint(model, exp_dir, epoch=None, device=device)
# Folder creation
if output_dir is not None:
record_path = output_dir/DEFAULT_RECORD_FILE
record_df = load_file(record_path, RECORD_KEYS)
# Define conditions for filtering
exist_conditions = {
NAME: config[NAME],
SHORT_NAME: config[SHORT_NAME],
CURRENT_EPOCH: epoch,
NBATCH: max_batches,
}
# Create boolean masks and combine them
masks = [(record_df[key] == value) for key, value in exist_conditions.items()]
if snr_filter is None:
masks.append((record_df[SNR_FILTER]).isnull())
else:
masks.append(record_df[SNR_FILTER] == str(snr_filter))
combined_mask = pd.Series(True, index=record_df.index)
for mask in masks:
combined_mask = combined_mask & mask
filtered_df = record_df[combined_mask]
save_dir = output_dir/(exp_dir.name+"_infer" + (f"_epoch_{epoch:04d}_nbatch_{max_batches if max_batches is not None else len(dl[TEST])}")
+ ("" if snr_filter is None else f"_snrs_{'_'.join(map(str, snr_filter))}"))
evaluation_path = save_dir/DEFAULT_EVALUATION_FILE
if not (filtered_df.empty) and not (force_reload):
assert evaluation_path.exists()
print(f"Inference already exists, see folder {save_dir}")
record_row_df = filtered_df
else:
record_row_df = pd.DataFrame({
NAME: config[NAME],
SHORT_NAME: config[SHORT_NAME],
CURRENT_EPOCH: epoch,
NBATCH: max_batches,
SNR_FILTER: [None],
}, index=[0], columns=RECORD_KEYS)
record_row_df.at[0, SNR_FILTER] = snr_filter
save_dir.mkdir(parents=True, exist_ok=True)
evaluation_df = load_file(evaluation_path, EVAL_KEYS)
with torch.no_grad():
test_loss = 0.
save_idx = 0
best_snr = 0
worst_snr = 0
processed_batches = 0
for step_index, (batch_mix, batch_signal, batch_noise) in tqdm(
enumerate(dl[TEST]), desc=f"Inference epoch {epoch}", total=max_batches if max_batches is not None else len(dl[TEST])):
batch_mix, batch_signal, batch_noise = batch_mix.to(
device), batch_signal.to(device), batch_noise.to(device)
batch_output_signal, _batch_output_noise = model(batch_mix)
loss = torch.nn.functional.mse_loss(batch_output_signal, batch_signal)
test_loss += loss.item()
# SNR stats
snr_in = snr(batch_mix, batch_signal, reduce=None)
snr_out = snr(batch_output_signal, batch_signal, reduce=None)
best_current, best_idx_current = torch.max(snr_out-snr_in, axis=0)
worst_current, worst_idx_current = torch.min(snr_out-snr_in, axis=0)
if best_current > best_snr:
best_snr = best_current
best_save_idx = save_idx + best_idx_current
if worst_current > worst_snr:
worst_snr = worst_current
worst_save_idx = save_idx + worst_idx_current
# Save by signal
batch_output_signal = batch_output_signal.detach().cpu()
batch_signal = batch_signal.detach().cpu()
batch_mix = batch_mix.detach().cpu()
for audio_idx in range(batch_output_signal.shape[0]):
dic = {SAVE_IDX: save_idx, SNR_IN: float(
snr_in[audio_idx]), SNR_OUT: float(snr_out[audio_idx])}
new_eval_row = pd.DataFrame(dic, index=[0])
evaluation_df = pd.concat([new_eval_row, evaluation_df.loc[:]], ignore_index=True)
# Save .wav
torchaudio.save(
str(save_dir/f"{save_idx:04d}_mixed{ext}"),
batch_mix[audio_idx, :, :],
sample_rate=dl[TEST].dataset.sampling_rate,
channels_first=True
)
torchaudio.save(
str(save_dir/f"{save_idx:04d}_out{ext}"),
batch_output_signal[audio_idx, :, :],
sample_rate=dl[TEST].dataset.sampling_rate,
channels_first=True
)
torchaudio.save(
str(save_dir/f"{save_idx:04d}_original{ext}"),
batch_signal[audio_idx, :, :],
sample_rate=dl[TEST].dataset.sampling_rate,
channels_first=True
)
Dump.save_json(dic, save_dir/f"{save_idx:04d}.json")
save_idx += 1
processed_batches += 1
if max_batches is not None and processed_batches >= max_batches:
break
test_loss = test_loss/len(dl[TEST])
evaluation_df.to_csv(evaluation_path)
record_row_df[BEST_SAVE_SNR] = int(best_save_idx)
record_row_df[BEST_SNR] = float(best_snr)
record_row_df[WORST_SAVE_SNR] = int(worst_save_idx)
record_row_df[WORST_SNR] = float(worst_snr)
record_df = pd.concat([record_row_df, record_df.loc[:]], ignore_index=True)
record_df.to_csv(record_path, index=0)
print(f"Test loss: {test_loss:.3e}, \nbest snr performance: {best_save_idx} with {best_snr:.1f}dB, \nworst snr performance: {worst_save_idx} with {worst_snr:.1f}dB")
return record_row_df, evaluation_path
def main(argv):
default_device = "cuda" if torch.cuda.is_available() else "cpu"
parser_def = shared_parser(help="Launch inference on a specific model"
+ ("\n<<<Cuda available>>>" if default_device == "cuda" else ""))
parser_def.add_argument("-i", "--input-dir", type=str, default=EXPERIMENT_STORAGE_ROOT)
parser_def.add_argument("-o", "--output-dir", type=str, default=EXPERIMENT_STORAGE_ROOT)
parser_def.add_argument("-d", "--device", type=str, default=default_device,
help="Training device", choices=["cpu", "cuda"])
parser_def.add_argument("-r", "--reload", action="store_true",
help="Force reload files")
parser_def.add_argument("-b", "--nb-batch", type=int, default=None,
help="Number of batches to process")
parser_def.add_argument("-s", "--snr-filter", type=float, nargs="+", default=None,
help="SNR filters on the inference dataloader")
parser_def.add_argument("-ext", "--extension", type=str, default=".wav", help="Extension of the audio files to save",
choices=[".wav", ".mp4"])
args = parser_def.parse_args(argv)
for exp in args.experiments:
launch_infer(
exp,
model_dir=Path(args.input_dir),
output_dir=Path(args.output_dir),
device=args.device,
force_reload=args.reload,
max_batches=args.nb_batch,
snr_filter=args.snr_filter,
ext=args.extension
)
if __name__ == "__main__":
main(sys.argv[1:])
# Example : python src\gyraudio\audio_separation\infer.py -i ./__output_audiosep -e 1002 -d cpu -b 2 -s 4 5 6
|