Spaces:
Building
Building
File size: 16,977 Bytes
f6b56a2 53c936d 55ca18f f6b56a2 769db2b f6b56a2 e2d04e8 53c936d f6b56a2 53c936d f6b56a2 769db2b f6b56a2 769db2b f6b56a2 e2d04e8 53c936d e2d04e8 f6b56a2 769db2b f6b56a2 769db2b f6b56a2 769db2b f6b56a2 db3db91 f6b56a2 e2d04e8 53c936d e2d04e8 f6b56a2 53c936d f6b56a2 53c936d f6b56a2 53c936d f6b56a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
from batch_processing import Batch
import argparse
from pathlib import Path
from gyraudio.audio_separation.experiment_tracking.experiments import get_experience
from gyraudio.audio_separation.experiment_tracking.storage import get_output_folder
from gyraudio.default_locations import EXPERIMENT_STORAGE_ROOT
from gyraudio.audio_separation.properties import (
SHORT_NAME, CLEAN, NOISY, MIXED, PREDICTED, ANNOTATIONS, PATHS, BUFFERS, SAMPLING_RATE, NAME
)
import torch
from gyraudio.audio_separation.experiment_tracking.storage import load_checkpoint
from gyraudio.audio_separation.visualization.pre_load_audio import (
parse_command_line_audio_load, load_buffers, audio_loading_batch)
from gyraudio.audio_separation.visualization.pre_load_custom_audio import (
parse_command_line_generic_audio_load, generic_audio_loading_batch,
load_buffers_custom
)
from torchaudio.functional import resample
from typing import List
import numpy as np
import logging
from interactive_pipe.data_objects.curves import Curve, SingleCurve
from interactive_pipe import interactive, KeyboardControl, Control
from interactive_pipe import interactive_pipeline
from gyraudio.audio_separation.visualization.audio_player import audio_selector, audio_trim, audio_player
default_device = "cuda" if torch.cuda.is_available() else "cpu"
LEARNT_SAMPLING_RATE = 8000
@interactive(
snr=(0., [-10., 10.], "SNR [dB]")
)
def remix(signals, snr=0., global_params={}):
signal = signals[BUFFERS][CLEAN]
noisy = signals[BUFFERS][NOISY]
alpha = 10 ** (-snr / 20) * torch.norm(signal) / torch.norm(noisy)
mixed_signal = signal + alpha * noisy
global_params["snr"] = snr
return mixed_signal
@interactive(std_dev=Control(0., value_range=[0., 0.1], name="extra noise std", step=0.0001),
amplify=(1., [0., 10.], "amplification of everything"))
def augment(signals, mixed, std_dev=0., amplify=1.):
signals[BUFFERS][MIXED] *= amplify
signals[BUFFERS][NOISY] *= amplify
signals[BUFFERS][CLEAN] *= amplify
mixed = mixed*amplify+torch.randn_like(mixed)*std_dev
return signals, mixed
# @interactive(
# device=("cuda", ["cpu", "cuda"]
# ) if default_device == "cuda" else ("cpu", ["cpu"])
# )
def select_device(device=default_device, global_params={}):
global_params["device"] = device
# @interactive(
# model=KeyboardControl(value_default=0, value_range=[
# 0, 99], keyup="pagedown", keydown="pageup")
# )
ALL_MODELS = ["Tiny UNET", "Large UNET", "Large UNET (Bias Free)"]
@interactive(
model=(ALL_MODELS[-1], ALL_MODELS, "Model selection")
)
def audio_sep_inference(mixed, models, configs, model: int = 0, global_params={}):
if isinstance(model, str):
model = ALL_MODELS.index(model)
assert isinstance(model, int)
selected_model = models[model % len(models)]
config = configs[model % len(models)]
short_name = config.get(SHORT_NAME, "")
annotations = config.get(ANNOTATIONS, "")
global_params[SHORT_NAME] = short_name
global_params[ANNOTATIONS] = annotations
device = global_params.get("device", "cpu")
with torch.no_grad():
selected_model.eval()
selected_model.to(device)
predicted_signal, predicted_noise = selected_model(
mixed.to(device).unsqueeze(0))
predicted_signal = predicted_signal.squeeze(0)
pred_curve = predicted_signal.detach().cpu().numpy()
return predicted_signal, pred_curve
def compute_metrics(pred, sig, global_params={}):
METRICS = "metrics"
target = sig[BUFFERS][CLEAN]
global_params[METRICS] = {}
global_params[METRICS]["MSE"] = torch.mean((target-pred.cpu())**2)
global_params[METRICS]["SNR"] = 10. * \
torch.log10(torch.sum(target**2)/torch.sum((target-pred.cpu())**2))
def get_trim(sig, zoom, center, num_samples=300):
N = len(sig)
native_ds = N/num_samples
center_idx = int(center*N)
window = int(num_samples/zoom*native_ds)
start_idx = max(0, center_idx - window//2)
end_idx = min(N, center_idx + window//2)
skip_factor = max(1, int(native_ds/zoom))
return start_idx, end_idx, skip_factor
def zin(sig, zoom, center, num_samples=300):
start_idx, end_idx, skip_factor = get_trim(
sig, zoom, center, num_samples=num_samples)
out = np.zeros(num_samples)
trimmed = sig[start_idx:end_idx:skip_factor]
out[:len(trimmed)] = trimmed[:num_samples]
return out
@interactive(
center=KeyboardControl(value_default=0.5, value_range=[
0., 1.], step=0.01, keyup="6", keydown="4", name="Trim (center)"),
zoom=KeyboardControl(value_default=0., value_range=[
0., 15.], step=1, keyup="+", keydown="-", name="Trim (zoom)"),
# zoomy=KeyboardControl(
# value_default=0., value_range=[-15., 15.], step=1, keyup="up", keydown="down")
)
def visualize_audio(signal: dict, mixed_signal, predicted_signal, zoom=1, zoomy=0., center=0.5, global_params={}):
"""Create curves
"""
selected = global_params.get("selected_audio", MIXED)
short_name = global_params.get(SHORT_NAME, "")
annotations = global_params.get(ANNOTATIONS, "")
zval = 1.5**zoom
start_idx, end_idx, _skip_factor = get_trim(
signal[BUFFERS][CLEAN][0, :], zval, center)
global_params["trim"] = dict(start=start_idx, end=end_idx)
selected = global_params.get("selected_audio", MIXED)
pred = SingleCurve(y=zin(predicted_signal[0, :], zval, center),
style="g-", label=("*" if selected == PREDICTED else " ")+f"predicted_{short_name} {annotations}")
clean = SingleCurve(y=zin(signal[BUFFERS][CLEAN][0, :], zval, center),
alpha=1.,
style="k-",
linewidth=0.9,
label=("*" if selected == CLEAN else " ")+"clean")
noisy = SingleCurve(y=zin(signal[BUFFERS][NOISY][0, :], zval, center),
alpha=0.3,
style="y--",
linewidth=1,
label=("*" if selected == NOISY else " ") + "noisy"
)
mixed = SingleCurve(y=zin(mixed_signal[0, :], zval, center), style="r-",
alpha=0.1,
linewidth=2,
label=("*" if selected == MIXED else " ") + "mixed")
# true_mixed = SingleCurve(y=zin(signal[BUFFERS][MIXED][0, :], zval, center),
# alpha=0.3, style="b-", linewidth=1, label="true mixed")
curves = [noisy, mixed, pred, clean]
title = f"SNR in {global_params.get('snr', np.nan):.1f} dB"
if "selected_info" in global_params:
title += f" | {global_params['selected_info']}"
title += "\n"
for metric_name, metric_value in global_params.get("metrics", {}).items():
title += f" | {metric_name} "
title += f"{metric_value:.2e}" if (abs(metric_value) < 1e-2 or abs(metric_value)
> 1000) else f"{metric_value:.2f}"
# if global_params.get("premixed_snr", None) is not None:
# title += f"| Premixed SNR : {global_params['premixed_snr']:.1f} dB"
return Curve(curves, ylim=[-0.04 * 1.5 ** zoomy, 0.04 * 1.5 ** zoomy], xlabel="Time index", ylabel="Amplitude", title=title)
@interactive(
idx=("Voice 1", ["Voice 1", "Voice 2",
"Voice 3", "Voice 4"], "Clean signal"),
# idx=KeyboardControl(value_default=0, value_range=[
# 0, 1000], modulo=True, keyup="8", keydown="2", name="clean signal index"),
# idn=KeyboardControl(value_default=0, value_range=[
# 0, 1000], modulo=True, keyup="9", keydown="3", name="noisy signal index")
)
def signal_selector(signals, idx="Voice 1", idn=0, global_params={}):
idx = int(idx.split("Voice ")[-1])
if isinstance(signals, dict):
clean_sigs = signals[CLEAN]
clean = clean_sigs[idx % len(clean_sigs)]
if BUFFERS not in clean:
load_buffers_custom(clean)
noise_sigs = signals[NOISY]
noise = noise_sigs[idn % len(noise_sigs)]
if BUFFERS not in noise:
load_buffers_custom(noise)
cbuf, nbuf = clean[BUFFERS], noise[BUFFERS]
if clean[SAMPLING_RATE] != LEARNT_SAMPLING_RATE:
cbuf = resample(cbuf, clean[SAMPLING_RATE], LEARNT_SAMPLING_RATE)
clean[SAMPLING_RATE] = LEARNT_SAMPLING_RATE
if noise[SAMPLING_RATE] != LEARNT_SAMPLING_RATE:
nbuf = resample(nbuf, noise[SAMPLING_RATE], LEARNT_SAMPLING_RATE)
noise[SAMPLING_RATE] = LEARNT_SAMPLING_RATE
min_length = min(cbuf.shape[-1], nbuf.shape[-1])
min_length = min_length - min_length % 1024
signal = {
PATHS: {
CLEAN: clean[PATHS],
NOISY: noise[PATHS]
},
BUFFERS: {
CLEAN: cbuf[..., :1, :min_length],
NOISY: nbuf[..., :1, :min_length],
},
NAME: f"Clean={clean[NAME]} | Noise={noise[NAME]}",
SAMPLING_RATE: LEARNT_SAMPLING_RATE
}
else:
# signals are loaded in CPU
signal = signals[idx % len(signals)]
if BUFFERS not in signal:
load_buffers(signal)
global_params["premixed_snr"] = signal.get("premixed_snr", None)
signal[NAME] = f"File={signal[NAME]}"
global_params["selected_info"] = signal[NAME]
global_params[SAMPLING_RATE] = signal[SAMPLING_RATE]
return signal
def interactive_audio_separation_processing(signals, model_list, config_list):
sig = signal_selector(signals)
mixed = remix(sig)
# sig, mixed = augment(sig, mixed)
select_device()
pred, pred_curve = audio_sep_inference(mixed, model_list, config_list)
compute_metrics(pred, sig)
sound = audio_selector(sig, mixed, pred)
curve = visualize_audio(sig, mixed, pred_curve)
trimmed_sound = audio_trim(sound)
audio_player(trimmed_sound)
return curve
def interactive_audio_separation_visualization(
all_signals: List[dict],
model_list: List[torch.nn.Module],
config_list: List[dict],
gui="gradio"
):
interactive_pipeline(gui=gui, cache=True, audio=True)(
interactive_audio_separation_processing
)(
all_signals, model_list, config_list
)
def visualization(
all_signals: List[dict],
model_list: List[torch.nn.Module],
config_list: List[dict],
device="cuda"
):
for signal in all_signals:
if BUFFERS not in signal:
load_buffers(signal, device="cpu")
clean = SingleCurve(y=signal[BUFFERS][CLEAN][0, :], label="clean")
noisy = SingleCurve(y=signal[BUFFERS][NOISY]
[0, :], label="noise", alpha=0.3)
curves = [clean, noisy]
for config, model in zip(config_list, model_list):
short_name = config.get(SHORT_NAME, "unknown")
predicted_signal, predicted_noise = model(
signal[BUFFERS][MIXED].to(device).unsqueeze(0))
predicted = SingleCurve(y=predicted_signal.squeeze(0)[0, :].detach().cpu().numpy(),
label=f"predicted_{short_name}")
curves.append(predicted)
Curve(curves).show()
def parse_command_line(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
if gradio_demo:
parser = parse_command_line_gradio(parser)
else:
parser = parse_command_line_generic(parser)
return parser
def parse_command_line_gradio(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
if parser is None:
parser = parse_command_line_audio_load()
default_device = "cuda" if torch.cuda.is_available() else "cpu"
iparse = parser.add_argument_group("Audio separation visualization")
iparse.add_argument("-e", "--experiments", type=int, nargs="+", default=[4, 1004, 3001,],
help="Experiment ids to be inferred sequentially")
iparse.add_argument("-p", "--interactive", default=True,
action="store_true", help="Play = Interactive mode")
iparse.add_argument("-m", "--model-root", type=str,
default=EXPERIMENT_STORAGE_ROOT)
iparse.add_argument("-d", "--device", type=str, default=default_device,
choices=["cpu", "cuda"] if default_device == "cuda" else ["cpu"])
iparse.add_argument("-gui", "--gui", type=str,
default="gradio", choices=["qt", "mpl", "gradio"])
return parser
def parse_command_line_generic(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
if parser is None:
parser = parse_command_line_audio_load()
default_device = "cuda" if torch.cuda.is_available() else "cpu"
iparse = parser.add_argument_group("Audio separation visualization")
iparse.add_argument("-e", "--experiments", type=int, nargs="+", required=True,
help="Experiment ids to be inferred sequentially")
iparse.add_argument("-p", "--interactive",
action="store_true", help="Play = Interactive mode")
iparse.add_argument("-m", "--model-root", type=str,
default=EXPERIMENT_STORAGE_ROOT)
iparse.add_argument("-d", "--device", type=str, default=default_device,
choices=["cpu", "cuda"] if default_device == "cuda" else ["cpu"])
iparse.add_argument("-gui", "--gui", type=str,
default="qt", choices=["qt", "mpl", "gradio"])
return parser
def main(argv: List[str]):
"""Paired signals and noise in folders"""
batch = Batch(argv)
batch.set_io_description(
input_help='input audio files',
output_help=argparse.SUPPRESS
)
batch.set_multiprocessing_enabled(False)
parser = parse_command_line()
args = batch.parse_args(parser)
exp = args.experiments[0]
device = args.device
models_list = []
config_list = []
logging.info(f"Loading experiments models {args.experiments}")
for exp in args.experiments:
model_dir = Path(args.model_root)
short_name, model, config, _dl = get_experience(exp)
_, exp_dir = get_output_folder(
config, root_dir=model_dir, override=False)
assert exp_dir.exists(
), f"Experiment {short_name} does not exist in {model_dir}"
model.eval()
model.to(device)
model, __optimizer, epoch, config = load_checkpoint(
model, exp_dir, epoch=None, device=args.device)
config[SHORT_NAME] = short_name
models_list.append(model)
config_list.append(config)
logging.info("Load audio buffers:")
all_signals = batch.run(audio_loading_batch)
if not args.interactive:
visualization(all_signals, models_list, config_list, device=device)
else:
interactive_audio_separation_visualization(
all_signals, models_list, config_list, gui=args.gui)
def main_custom(argv: List[str]):
"""Handle custom noise and custom signals
"""
parser = parse_command_line()
parser.add_argument("-s", "--signal", type=str, required=True,
nargs="+", help="Signal to be preloaded")
parser.add_argument("-n", "--noise", type=str, required=True,
nargs="+", help="Noise to be preloaded")
args = parser.parse_args(argv)
exp = args.experiments[0]
device = args.device
models_list = []
config_list = []
logging.info(f"Loading experiments models {args.experiments}")
for exp in args.experiments:
model_dir = Path(args.model_root)
short_name, model, config, _dl = get_experience(exp)
_, exp_dir = get_output_folder(
config, root_dir=model_dir, override=False)
assert exp_dir.exists(
), f"Experiment {short_name} does not exist in {model_dir}"
model.eval()
model.to(device)
model, __optimizer, epoch, config = load_checkpoint(
model, exp_dir, epoch=None, device=args.device)
config[SHORT_NAME] = short_name
models_list.append(model)
config_list.append(config)
all_signals = {}
for args_paths, key in zip([args.signal, args.noise], [CLEAN, NOISY]):
new_argv = ["-i"] + args_paths
if args.preload:
new_argv += ["--preload"]
batch = Batch(new_argv)
new_parser = parse_command_line_generic_audio_load()
batch.set_io_description(
input_help=argparse.SUPPRESS, # 'input audio files',
output_help=argparse.SUPPRESS
)
batch.set_multiprocessing_enabled(False)
_ = batch.parse_args(new_parser)
all_signals[key] = batch.run(generic_audio_loading_batch)
interactive_audio_separation_visualization(
all_signals, models_list, config_list, gui=args.gui)
|