File size: 16,977 Bytes
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c936d
55ca18f
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769db2b
 
f6b56a2
 
 
 
 
e2d04e8
 
 
 
53c936d
 
 
 
 
 
f6b56a2
53c936d
 
 
f6b56a2
 
 
 
769db2b
 
f6b56a2
 
 
 
 
 
 
769db2b
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2d04e8
53c936d
e2d04e8
 
 
f6b56a2
769db2b
f6b56a2
 
769db2b
 
 
f6b56a2
 
 
 
 
769db2b
 
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3db91
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
e2d04e8
53c936d
 
e2d04e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c936d
f6b56a2
53c936d
 
 
 
 
 
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c936d
f6b56a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from batch_processing import Batch
import argparse
from pathlib import Path
from gyraudio.audio_separation.experiment_tracking.experiments import get_experience
from gyraudio.audio_separation.experiment_tracking.storage import get_output_folder
from gyraudio.default_locations import EXPERIMENT_STORAGE_ROOT
from gyraudio.audio_separation.properties import (
    SHORT_NAME, CLEAN, NOISY, MIXED, PREDICTED, ANNOTATIONS, PATHS, BUFFERS, SAMPLING_RATE, NAME
)
import torch
from gyraudio.audio_separation.experiment_tracking.storage import load_checkpoint
from gyraudio.audio_separation.visualization.pre_load_audio import (
    parse_command_line_audio_load, load_buffers, audio_loading_batch)
from gyraudio.audio_separation.visualization.pre_load_custom_audio import (
    parse_command_line_generic_audio_load, generic_audio_loading_batch,
    load_buffers_custom
)
from torchaudio.functional import resample
from typing import List
import numpy as np
import logging
from interactive_pipe.data_objects.curves import Curve, SingleCurve
from interactive_pipe import interactive, KeyboardControl, Control
from interactive_pipe import interactive_pipeline

from gyraudio.audio_separation.visualization.audio_player import audio_selector, audio_trim, audio_player

default_device = "cuda" if torch.cuda.is_available() else "cpu"
LEARNT_SAMPLING_RATE = 8000


@interactive(
    snr=(0., [-10., 10.], "SNR [dB]")
)
def remix(signals, snr=0., global_params={}):
    signal = signals[BUFFERS][CLEAN]
    noisy = signals[BUFFERS][NOISY]
    alpha = 10 ** (-snr / 20) * torch.norm(signal) / torch.norm(noisy)
    mixed_signal = signal + alpha * noisy
    global_params["snr"] = snr
    return mixed_signal


@interactive(std_dev=Control(0., value_range=[0., 0.1], name="extra noise std", step=0.0001),
             amplify=(1., [0., 10.], "amplification of everything"))
def augment(signals, mixed, std_dev=0., amplify=1.):
    signals[BUFFERS][MIXED] *= amplify
    signals[BUFFERS][NOISY] *= amplify
    signals[BUFFERS][CLEAN] *= amplify
    mixed = mixed*amplify+torch.randn_like(mixed)*std_dev
    return signals, mixed


# @interactive(
#     device=("cuda", ["cpu", "cuda"]
#             ) if default_device == "cuda" else ("cpu", ["cpu"])
# )
def select_device(device=default_device, global_params={}):
    global_params["device"] = device


# @interactive(
#     model=KeyboardControl(value_default=0, value_range=[
#                           0, 99], keyup="pagedown", keydown="pageup")
# )
ALL_MODELS = ["Tiny UNET", "Large UNET", "Large UNET (Bias Free)"]


@interactive(
    model=(ALL_MODELS[-1], ALL_MODELS, "Model selection")
)
def audio_sep_inference(mixed, models, configs, model: int = 0, global_params={}):
    if isinstance(model, str):
        model = ALL_MODELS.index(model)
    assert isinstance(model, int)
    selected_model = models[model % len(models)]
    config = configs[model % len(models)]
    short_name = config.get(SHORT_NAME, "")
    annotations = config.get(ANNOTATIONS, "")
    global_params[SHORT_NAME] = short_name
    global_params[ANNOTATIONS] = annotations
    device = global_params.get("device", "cpu")
    with torch.no_grad():
        selected_model.eval()
        selected_model.to(device)
        predicted_signal, predicted_noise = selected_model(
            mixed.to(device).unsqueeze(0))
        predicted_signal = predicted_signal.squeeze(0)
        pred_curve = predicted_signal.detach().cpu().numpy()
    return predicted_signal, pred_curve


def compute_metrics(pred, sig, global_params={}):
    METRICS = "metrics"
    target = sig[BUFFERS][CLEAN]
    global_params[METRICS] = {}
    global_params[METRICS]["MSE"] = torch.mean((target-pred.cpu())**2)
    global_params[METRICS]["SNR"] = 10. * \
        torch.log10(torch.sum(target**2)/torch.sum((target-pred.cpu())**2))


def get_trim(sig, zoom, center, num_samples=300):
    N = len(sig)
    native_ds = N/num_samples
    center_idx = int(center*N)
    window = int(num_samples/zoom*native_ds)
    start_idx = max(0, center_idx - window//2)
    end_idx = min(N, center_idx + window//2)
    skip_factor = max(1, int(native_ds/zoom))
    return start_idx, end_idx, skip_factor


def zin(sig, zoom, center, num_samples=300):
    start_idx, end_idx, skip_factor = get_trim(
        sig, zoom, center, num_samples=num_samples)
    out = np.zeros(num_samples)
    trimmed = sig[start_idx:end_idx:skip_factor]
    out[:len(trimmed)] = trimmed[:num_samples]
    return out


@interactive(
    center=KeyboardControl(value_default=0.5, value_range=[
                           0., 1.], step=0.01, keyup="6", keydown="4", name="Trim (center)"),
    zoom=KeyboardControl(value_default=0., value_range=[
                         0., 15.], step=1, keyup="+", keydown="-", name="Trim (zoom)"),
    # zoomy=KeyboardControl(
    #     value_default=0., value_range=[-15., 15.], step=1, keyup="up", keydown="down")
)
def visualize_audio(signal: dict, mixed_signal, predicted_signal, zoom=1, zoomy=0., center=0.5, global_params={}):
    """Create curves
    """
    selected = global_params.get("selected_audio", MIXED)
    short_name = global_params.get(SHORT_NAME, "")
    annotations = global_params.get(ANNOTATIONS, "")
    zval = 1.5**zoom
    start_idx, end_idx, _skip_factor = get_trim(
        signal[BUFFERS][CLEAN][0, :], zval, center)
    global_params["trim"] = dict(start=start_idx, end=end_idx)
    selected = global_params.get("selected_audio", MIXED)
    pred = SingleCurve(y=zin(predicted_signal[0, :], zval, center),
                       style="g-", label=("*" if selected == PREDICTED else " ")+f"predicted_{short_name} {annotations}")
    clean = SingleCurve(y=zin(signal[BUFFERS][CLEAN][0, :], zval, center),
                        alpha=1.,
                        style="k-",
                        linewidth=0.9,
                        label=("*" if selected == CLEAN else " ")+"clean")
    noisy = SingleCurve(y=zin(signal[BUFFERS][NOISY][0, :], zval, center),
                        alpha=0.3,
                        style="y--",
                        linewidth=1,
                        label=("*" if selected == NOISY else " ") + "noisy"
                        )
    mixed = SingleCurve(y=zin(mixed_signal[0, :], zval, center), style="r-",
                        alpha=0.1,
                        linewidth=2,
                        label=("*" if selected == MIXED else " ") + "mixed")
    # true_mixed = SingleCurve(y=zin(signal[BUFFERS][MIXED][0, :], zval, center),
    #                          alpha=0.3, style="b-", linewidth=1, label="true mixed")
    curves = [noisy, mixed, pred, clean]
    title = f"SNR  in {global_params.get('snr', np.nan):.1f} dB"
    if "selected_info" in global_params:
        title += f" | {global_params['selected_info']}"
    title += "\n"
    for metric_name, metric_value in global_params.get("metrics", {}).items():
        title += f" | {metric_name} "
        title += f"{metric_value:.2e}" if (abs(metric_value) < 1e-2 or abs(metric_value)
                                           > 1000) else f"{metric_value:.2f}"
    # if global_params.get("premixed_snr", None) is not None:
    #     title += f"| Premixed SNR : {global_params['premixed_snr']:.1f} dB"
    return Curve(curves, ylim=[-0.04 * 1.5 ** zoomy, 0.04 * 1.5 ** zoomy], xlabel="Time index", ylabel="Amplitude", title=title)


@interactive(
    idx=("Voice 1", ["Voice 1", "Voice 2",
         "Voice 3", "Voice 4"], "Clean signal"),
    # idx=KeyboardControl(value_default=0, value_range=[
    #                     0, 1000], modulo=True, keyup="8", keydown="2", name="clean signal index"),
    # idn=KeyboardControl(value_default=0, value_range=[
    #                     0, 1000], modulo=True, keyup="9", keydown="3", name="noisy signal index")
)
def signal_selector(signals, idx="Voice 1", idn=0, global_params={}):
    idx = int(idx.split("Voice ")[-1])
    if isinstance(signals, dict):
        clean_sigs = signals[CLEAN]
        clean = clean_sigs[idx % len(clean_sigs)]
        if BUFFERS not in clean:
            load_buffers_custom(clean)
        noise_sigs = signals[NOISY]
        noise = noise_sigs[idn % len(noise_sigs)]
        if BUFFERS not in noise:
            load_buffers_custom(noise)
        cbuf, nbuf = clean[BUFFERS], noise[BUFFERS]
        if clean[SAMPLING_RATE] != LEARNT_SAMPLING_RATE:
            cbuf = resample(cbuf, clean[SAMPLING_RATE], LEARNT_SAMPLING_RATE)
            clean[SAMPLING_RATE] = LEARNT_SAMPLING_RATE
        if noise[SAMPLING_RATE] != LEARNT_SAMPLING_RATE:
            nbuf = resample(nbuf, noise[SAMPLING_RATE], LEARNT_SAMPLING_RATE)
            noise[SAMPLING_RATE] = LEARNT_SAMPLING_RATE
        min_length = min(cbuf.shape[-1], nbuf.shape[-1])
        min_length = min_length - min_length % 1024
        signal = {
            PATHS: {
                CLEAN: clean[PATHS],
                NOISY: noise[PATHS]

            },
            BUFFERS: {
                CLEAN: cbuf[..., :1, :min_length],
                NOISY: nbuf[..., :1, :min_length],
            },
            NAME: f"Clean={clean[NAME]} | Noise={noise[NAME]}",
            SAMPLING_RATE: LEARNT_SAMPLING_RATE
        }
    else:
        # signals are loaded in CPU
        signal = signals[idx % len(signals)]
        if BUFFERS not in signal:
            load_buffers(signal)
        global_params["premixed_snr"] = signal.get("premixed_snr", None)
        signal[NAME] = f"File={signal[NAME]}"
    global_params["selected_info"] = signal[NAME]
    global_params[SAMPLING_RATE] = signal[SAMPLING_RATE]
    return signal


def interactive_audio_separation_processing(signals, model_list, config_list):
    sig = signal_selector(signals)
    mixed = remix(sig)
    # sig, mixed = augment(sig, mixed)
    select_device()
    pred, pred_curve = audio_sep_inference(mixed, model_list, config_list)
    compute_metrics(pred, sig)
    sound = audio_selector(sig, mixed, pred)
    curve = visualize_audio(sig, mixed, pred_curve)
    trimmed_sound = audio_trim(sound)
    audio_player(trimmed_sound)
    return curve


def interactive_audio_separation_visualization(
        all_signals: List[dict],
        model_list: List[torch.nn.Module],
        config_list: List[dict],
        gui="gradio"
):

    interactive_pipeline(gui=gui, cache=True, audio=True)(
        interactive_audio_separation_processing
    )(
        all_signals, model_list, config_list
    )


def visualization(
    all_signals: List[dict],
    model_list: List[torch.nn.Module],
    config_list: List[dict],
    device="cuda"
):
    for signal in all_signals:
        if BUFFERS not in signal:
            load_buffers(signal, device="cpu")
        clean = SingleCurve(y=signal[BUFFERS][CLEAN][0, :], label="clean")
        noisy = SingleCurve(y=signal[BUFFERS][NOISY]
                            [0, :], label="noise", alpha=0.3)
        curves = [clean, noisy]
        for config, model in zip(config_list, model_list):
            short_name = config.get(SHORT_NAME, "unknown")
            predicted_signal, predicted_noise = model(
                signal[BUFFERS][MIXED].to(device).unsqueeze(0))
            predicted = SingleCurve(y=predicted_signal.squeeze(0)[0, :].detach().cpu().numpy(),
                                    label=f"predicted_{short_name}")
            curves.append(predicted)
        Curve(curves).show()


def parse_command_line(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
    if gradio_demo:
        parser = parse_command_line_gradio(parser)
    else:
        parser = parse_command_line_generic(parser)
    return parser


def parse_command_line_gradio(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
    if parser is None:
        parser = parse_command_line_audio_load()
    default_device = "cuda" if torch.cuda.is_available() else "cpu"
    iparse = parser.add_argument_group("Audio separation visualization")
    iparse.add_argument("-e",  "--experiments", type=int, nargs="+", default=[4, 1004, 3001,],
                        help="Experiment ids to be inferred sequentially")
    iparse.add_argument("-p", "--interactive", default=True,
                        action="store_true", help="Play = Interactive mode")
    iparse.add_argument("-m", "--model-root", type=str,
                        default=EXPERIMENT_STORAGE_ROOT)
    iparse.add_argument("-d", "--device", type=str, default=default_device,
                        choices=["cpu", "cuda"] if default_device == "cuda" else ["cpu"])
    iparse.add_argument("-gui", "--gui", type=str,
                        default="gradio", choices=["qt", "mpl", "gradio"])
    return parser


def parse_command_line_generic(parser: Batch = None, gradio_demo=True) -> argparse.ArgumentParser:
    if parser is None:
        parser = parse_command_line_audio_load()
    default_device = "cuda" if torch.cuda.is_available() else "cpu"
    iparse = parser.add_argument_group("Audio separation visualization")
    iparse.add_argument("-e",  "--experiments", type=int, nargs="+", required=True,
                        help="Experiment ids to be inferred sequentially")
    iparse.add_argument("-p", "--interactive",
                        action="store_true", help="Play = Interactive mode")
    iparse.add_argument("-m", "--model-root", type=str,
                        default=EXPERIMENT_STORAGE_ROOT)
    iparse.add_argument("-d", "--device", type=str, default=default_device,
                        choices=["cpu", "cuda"] if default_device == "cuda" else ["cpu"])
    iparse.add_argument("-gui", "--gui", type=str,
                        default="qt", choices=["qt", "mpl", "gradio"])
    return parser


def main(argv: List[str]):
    """Paired signals and noise in folders"""
    batch = Batch(argv)
    batch.set_io_description(
        input_help='input audio files',
        output_help=argparse.SUPPRESS
    )
    batch.set_multiprocessing_enabled(False)
    parser = parse_command_line()
    args = batch.parse_args(parser)
    exp = args.experiments[0]
    device = args.device
    models_list = []
    config_list = []
    logging.info(f"Loading experiments models {args.experiments}")
    for exp in args.experiments:
        model_dir = Path(args.model_root)
        short_name, model, config, _dl = get_experience(exp)
        _, exp_dir = get_output_folder(
            config, root_dir=model_dir, override=False)
        assert exp_dir.exists(
        ), f"Experiment {short_name} does not exist in {model_dir}"
        model.eval()
        model.to(device)
        model, __optimizer, epoch, config = load_checkpoint(
            model, exp_dir, epoch=None, device=args.device)
        config[SHORT_NAME] = short_name
        models_list.append(model)
        config_list.append(config)
    logging.info("Load audio buffers:")
    all_signals = batch.run(audio_loading_batch)
    if not args.interactive:
        visualization(all_signals, models_list, config_list, device=device)
    else:
        interactive_audio_separation_visualization(
            all_signals, models_list, config_list, gui=args.gui)


def main_custom(argv: List[str]):
    """Handle custom noise and custom signals
    """
    parser = parse_command_line()
    parser.add_argument("-s", "--signal", type=str, required=True,
                        nargs="+", help="Signal to be preloaded")
    parser.add_argument("-n", "--noise", type=str, required=True,
                        nargs="+", help="Noise to be preloaded")
    args = parser.parse_args(argv)
    exp = args.experiments[0]
    device = args.device
    models_list = []
    config_list = []
    logging.info(f"Loading experiments models {args.experiments}")
    for exp in args.experiments:
        model_dir = Path(args.model_root)
        short_name, model, config, _dl = get_experience(exp)
        _, exp_dir = get_output_folder(
            config, root_dir=model_dir, override=False)
        assert exp_dir.exists(
        ), f"Experiment {short_name} does not exist in {model_dir}"
        model.eval()
        model.to(device)
        model, __optimizer, epoch, config = load_checkpoint(
            model, exp_dir, epoch=None, device=args.device)
        config[SHORT_NAME] = short_name
        models_list.append(model)
        config_list.append(config)
    all_signals = {}
    for args_paths, key in zip([args.signal, args.noise], [CLEAN, NOISY]):
        new_argv = ["-i"] + args_paths
        if args.preload:
            new_argv += ["--preload"]
        batch = Batch(new_argv)
        new_parser = parse_command_line_generic_audio_load()
        batch.set_io_description(
            input_help=argparse.SUPPRESS,  # 'input audio files',
            output_help=argparse.SUPPRESS
        )
        batch.set_multiprocessing_enabled(False)
        _ = batch.parse_args(new_parser)
        all_signals[key] = batch.run(generic_audio_loading_batch)
    interactive_audio_separation_visualization(
        all_signals, models_list, config_list, gui=args.gui)