Spaces:
Building
Building
from gyraudio.audio_separation.data.dataset import AudioDataset | |
from typing import Tuple | |
import logging | |
from torch import Tensor | |
import torch | |
import torchaudio | |
class RemixedAudioDataset(AudioDataset): | |
def generate_snr_list(self): | |
self.snr_list = None | |
def load_data(self): | |
self.folder_list = sorted(list(self.data_path.iterdir())) | |
self.file_list = [ | |
[ | |
folder/"voice.wav", | |
folder/"noise.wav" | |
] for folder in self.folder_list | |
] | |
self.sampling_rate = None | |
self.min_snr, self.max_snr = -4, 4 | |
self.generate_snr_list() | |
if self.debug: | |
print("Not filtered", len(self.file_list), self.snr_filter) | |
print(self.snr_list) | |
def get_idx_noise(self, idx): | |
raise NotImplementedError("get_idx_noise method must be implemented") | |
def get_snr(self, idx): | |
raise NotImplementedError("get_snr method must be implemented") | |
def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, Tensor]: | |
signal_path = self.file_list[idx][0] | |
idx_noise = self.get_idx_noise(idx) | |
noise_path = self.file_list[idx_noise][1] | |
assert signal_path.exists() | |
assert noise_path.exists() | |
clean_audio_signal, sampling_rate = torchaudio.load(str(signal_path)) | |
noise_audio_signal, sampling_rate = torchaudio.load(str(noise_path)) | |
snr = self.get_snr(idx) | |
alpha = 10 ** (-snr / 20) * torch.norm(clean_audio_signal) / torch.norm(noise_audio_signal) | |
mixed_audio_signal = clean_audio_signal + alpha*noise_audio_signal | |
self.sampling_rate = sampling_rate | |
mixed_audio_signal, clean_audio_signal, noise_audio_signal = self.augment_data( | |
mixed_audio_signal, clean_audio_signal, noise_audio_signal) | |
if self.debug: | |
logging.debug(f"{mixed_audio_signal.shape}") | |
logging.debug(f"{clean_audio_signal.shape}") | |
logging.debug(f"{noise_audio_signal.shape}") | |
return mixed_audio_signal, clean_audio_signal, noise_audio_signal | |