File size: 5,756 Bytes
cec5823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 24 01:21:46 2024

@author: jamyl
"""
import torch
from rstor.properties import DATASET_BLUR_KERNEL_PATH
import random
from scipy.io import loadmat
import cv2


class Degradation():
    def __init__(self,
                 length: int = 1000,
                 frozen_seed: int = None):
        self.frozen_seed = frozen_seed
        self.current_degradation = {}


class DegradationNoise(Degradation):
    def __init__(self,
                 length: int = 1000,
                 noise_stddev: float = [0., 50.],
                 frozen_seed: int = None):
        super().__init__(length, frozen_seed)
        self.noise_stddev = noise_stddev

        if frozen_seed is not None:
            random.seed(frozen_seed)
            self.noise_stddev = [(self.noise_stddev[1] - self.noise_stddev[0]) *
                                 random.random() + self.noise_stddev[0] for _ in range(length)]

    def __call__(self, x: torch.Tensor, idx: int):
        # WARNING! INPLACE OPERATIONS!!!!!
        # expects x of shape [b, c, h, w]
        assert x.ndim == 4
        assert x.shape[1] in [1, 3]

        if self.frozen_seed is not None:
            std_dev = self.noise_stddev[idx]
        else:
            std_dev = (self.noise_stddev[1] - self.noise_stddev[0]) * random.random() + self.noise_stddev[0]

        if std_dev > 0.:
            # x += (std_dev/255.)*np.random.randn(*x.shape)
            x += (std_dev/255.)*torch.randn(*x.shape, device=x.device)
        self.current_degradation[idx] = {
            "noise_stddev": std_dev
        }
        return x


class DegradationBlurMat(Degradation):
    def __init__(self,
                 length: int = 1000,
                 frozen_seed: int = None,
                 blur_index: int = None):
        super().__init__(length, frozen_seed)

        kernels = loadmat(DATASET_BLUR_KERNEL_PATH)["kernels"].squeeze()
        # conversion to torch (the shape of the kernel is not constant)
        self.kernels = tuple([
            torch.from_numpy(kernel/kernel.sum(keepdims=True)).unsqueeze(0).unsqueeze(0)
            for kernel in kernels] + [torch.ones((1, 1)).unsqueeze(0).unsqueeze(0)])
        self.n_kernels = len(self.kernels)

        if frozen_seed is not None:
            random.seed(frozen_seed)
            self.kernel_ids = [random.randint(0, self.n_kernels-1) for _ in range(length)]
        if blur_index is not None:
            self.frozen_seed = 42
            self.kernel_ids = [blur_index for _ in range(length)]

    def __call__(self, x: torch.Tensor, idx: int):
        # expects x of shape [b, c, h, w]
        assert x.ndim == 4
        assert x.shape[1] in [1, 3]
        device = x.device

        if self.frozen_seed is not None:
            kernel_id = self.kernel_ids[idx]
        else:
            kernel_id = random.randint(0, self.n_kernels-1)

        kernel = self.kernels[kernel_id].to(device).repeat(3, 1, 1, 1).float()  # repeat for grouped conv
        _, _, kh, kw = kernel.shape
        # We use padding = same to make
        # sure that the output size does not depend on the kernel.

        # define nn.Conf layer to define both padding mode and padding value...
        conv_layer = torch.nn.Conv2d(in_channels=x.shape[1],
                                     out_channels=x.shape[1],
                                     kernel_size=(kh, kw),
                                     padding="same",
                                     padding_mode='replicate',
                                     groups=3,
                                     bias=False)

        # Set the predefined kernel as weights and freeze the parameters
        with torch.no_grad():
            conv_layer.weight = torch.nn.Parameter(kernel)
            conv_layer.weight.requires_grad = False
        # breakpoint()
        x = conv_layer(x)
        # Alternative Functional version with 0 padding :
        # x = F.conv2d(x, kernel, padding="same", groups=3)

        self.current_degradation[idx] = {
            "blur_kernel_id": kernel_id
        }
        return x


class DegradationBlurGauss(Degradation):
    def __init__(self,
                 length: int = 1000,
                 blur_kernel_half_size: int = [0, 2],
                 frozen_seed: int = None):
        super().__init__(length, frozen_seed)

        self.blur_kernel_half_size = blur_kernel_half_size
        # conversion to torch (the shape of the kernel is not constant)
        if frozen_seed is not None:
            random.seed(self.frozen_seed)
            self.blur_kernel_half_size = [
                (
                    random.randint(self.blur_kernel_half_size[0], self.blur_kernel_half_size[1]),
                    random.randint(self.blur_kernel_half_size[0], self.blur_kernel_half_size[1])
                ) for _ in range(length)
            ]

    def __call__(self, x: torch.Tensor, idx: int):
        # expects x of shape [b, c, h, w]
        assert x.ndim == 4
        assert x.shape[1] in [1, 3]
        device = x.device

        if self.frozen_seed is not None:
            k_size_x, k_size_y = self.blur_kernel_half_size[idx]
        else:
            k_size_x = random.randint(self.blur_kernel_half_size[0], self.blur_kernel_half_size[1])
            k_size_y = random.randint(self.blur_kernel_half_size[0], self.blur_kernel_half_size[1])

        k_size_x = 2 * k_size_x + 1
        k_size_y = 2 * k_size_y + 1

        x = x.squeeze(0).permute(1, 2, 0).cpu().numpy()
        x = cv2.GaussianBlur(x, (k_size_x, k_size_y), 0)
        x = torch.from_numpy(x).to(device).permute(2, 0, 1).unsqueeze(0)

        self.current_degradation[idx] = {
            "blur_kernel_half_size": (k_size_x, k_size_y),
        }
        return x