Spaces:
Running
Running
""" | |
NAFNet: Non linear activation free neural network | |
Architecture adapted from Simple Baselines for Image Restoration | |
https://github.com/megvii-research/NAFNet/tree/main | |
""" | |
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
from rstor.architecture.base import BaseModel, get_non_linearity | |
from typing import Optional, List | |
from rstor.properties import RELU, SIMPLE_GATE | |
class LayerNormFunction(torch.autograd.Function): | |
def forward(ctx, x, weight, bias, eps): | |
ctx.eps = eps | |
N, C, H, W = x.size() | |
mu = x.mean(1, keepdim=True) | |
var = (x - mu).pow(2).mean(1, keepdim=True) | |
y = (x - mu) / (var + eps).sqrt() | |
ctx.save_for_backward(y, var, weight) | |
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) | |
return y | |
def backward(ctx, grad_output): | |
eps = ctx.eps | |
N, C, H, W = grad_output.size() | |
y, var, weight = ctx.saved_variables | |
g = grad_output * weight.view(1, C, 1, 1) | |
mean_g = g.mean(dim=1, keepdim=True) | |
mean_gy = (g * y).mean(dim=1, keepdim=True) | |
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) | |
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( | |
dim=0), None | |
class LayerNorm2d(nn.Module): | |
def __init__(self, channels, eps=1e-6): | |
super(LayerNorm2d, self).__init__() | |
self.register_parameter('weight', nn.Parameter(torch.ones(channels))) | |
self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) | |
self.eps = eps | |
def forward(self, x): | |
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) | |
class NAFBlock(nn.Module): | |
def __init__( | |
self, | |
c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0., | |
activation: Optional[str] = SIMPLE_GATE, | |
layer_norm_flag: Optional[bool] = True, | |
channel_attention_flag: Optional[bool] = True, | |
): | |
super().__init__() | |
self.layer_norm_flag = layer_norm_flag | |
self.channel_attention_flag = channel_attention_flag | |
dw_channel = c * DW_Expand | |
half_dw_channel = dw_channel // 2 | |
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, | |
padding=0, stride=1, groups=1, bias=True) | |
self.conv2 = nn.Conv2d( | |
in_channels=dw_channel, | |
out_channels=dw_channel if activation == SIMPLE_GATE else half_dw_channel, | |
kernel_size=3, | |
padding=1, stride=1, | |
groups=dw_channel if activation == SIMPLE_GATE else half_dw_channel, | |
bias=True | |
) | |
# To grand the same amount of parameters between Simple Gate and ReLU versions... | |
# Conv2 has to reduce the number of channels to half but... using grouped convolution | |
# w -> w/2 ... not really a depthwise convolution but rather by channels of 2! | |
self.conv3 = nn.Conv2d(in_channels=half_dw_channel, out_channels=c, | |
kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
# Simplified Channel Attention | |
if self.channel_attention_flag: | |
self.sca = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels=half_dw_channel, out_channels=half_dw_channel, kernel_size=1, | |
padding=0, stride=1, | |
groups=1, bias=True), | |
) | |
# SimpleGate | |
self.sg = get_non_linearity(activation) | |
ffn_channel = FFN_Expand | |
half_ffn_channel = ffn_channel // 2 if activation == SIMPLE_GATE else ffn_channel | |
self.conv4 = nn.Conv2d( | |
in_channels=c, | |
out_channels=ffn_channel if activation == SIMPLE_GATE else half_ffn_channel, | |
kernel_size=1, | |
padding=0, stride=1, groups=1, bias=True) | |
self.conv5 = nn.Conv2d(in_channels=half_ffn_channel, out_channels=c, | |
kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
if self.layer_norm_flag: | |
self.norm1 = LayerNorm2d(c) | |
self.norm2 = LayerNorm2d(c) | |
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
def forward(self, inp): | |
x = inp | |
if self.layer_norm_flag: | |
x = self.norm1(x) | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.sg(x) | |
if self.channel_attention_flag: | |
x = x * self.sca(x) | |
x = self.conv3(x) | |
x = self.dropout1(x) | |
y = inp + x * self.beta | |
x = self.conv4(self.norm2(y) if self.layer_norm_flag else y) | |
x = self.sg(x) | |
x = self.conv5(x) | |
x = self.dropout2(x) | |
return y + x * self.gamma | |
class NAFNet(BaseModel): | |
def __init__( | |
self, | |
img_channel: Optional[int] = 3, | |
width: Optional[int] = 16, | |
middle_blk_num: Optional[int] = 1, | |
enc_blk_nums: List[int] = [], | |
dec_blk_nums: List[int] = [], | |
activation: Optional[bool] = SIMPLE_GATE, | |
layer_norm_flag: Optional[bool] = True, | |
channel_attention_flag: Optional[bool] = True, | |
) -> None: | |
super().__init__() | |
self.intro = nn.Conv2d( | |
in_channels=img_channel, | |
out_channels=width, | |
kernel_size=3, | |
padding=1, stride=1, | |
groups=1, | |
bias=True | |
) | |
config_block = { | |
"activation": activation, | |
"layer_norm_flag": layer_norm_flag, | |
"channel_attention_flag": channel_attention_flag | |
} | |
self.ending = nn.Conv2d( | |
in_channels=width, out_channels=img_channel, kernel_size=3, | |
padding=1, stride=1, groups=1, | |
bias=True) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
self.middle_blks = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
self.downs = nn.ModuleList() | |
chan = width | |
for num in enc_blk_nums: | |
self.encoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan, **config_block) for _ in range(num)] | |
) | |
) | |
self.downs.append( | |
nn.Conv2d(chan, 2*chan, 2, 2) | |
) | |
chan = chan * 2 | |
self.middle_blks = \ | |
nn.Sequential( | |
*[NAFBlock(chan, **config_block) for _ in range(middle_blk_num)] | |
) | |
for num in dec_blk_nums: | |
self.ups.append( | |
nn.Sequential( | |
nn.Conv2d(chan, chan * 2, 1, bias=False), | |
nn.PixelShuffle(2) | |
) | |
) | |
chan = chan // 2 | |
self.decoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan, **config_block) for _ in range(num)] | |
) | |
) | |
self.padder_size = 2 ** len(self.encoders) | |
def forward(self, inp: torch.Tensor) -> torch.Tensor: | |
B, C, H, W = inp.shape | |
inp = self.sanitize_image_size(inp) | |
x = self.intro(inp) | |
encs = [] | |
for encoder, down in zip(self.encoders, self.downs): | |
x = encoder(x) | |
encs.append(x) | |
x = down(x) | |
x = self.middle_blks(x) | |
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): | |
x = up(x) | |
x = x + enc_skip | |
x = decoder(x) | |
x = self.ending(x) | |
x = x + inp | |
return x[:, :, :H, :W] | |
def sanitize_image_size(self, x: torch.Tensor) -> torch.Tensor: | |
_, _, h, w = x.size() | |
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | |
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) | |
return x | |
class UNet(NAFNet): | |
def __init__( | |
self, | |
activation: Optional[bool] = RELU, | |
layer_norm_flag: Optional[bool] = False, | |
channel_attention_flag: Optional[bool] = False, | |
**kwargs): | |
super().__init__( | |
activation=activation, | |
layer_norm_flag=layer_norm_flag, | |
channel_attention_flag=channel_attention_flag, **kwargs) | |
if __name__ == '__main__': | |
tiny_recetive_field = True | |
if tiny_recetive_field: | |
enc_blks = [1, 1, 2] | |
middle_blk_num = 1 | |
dec_blks = [1, 1, 1] | |
width = 16 | |
# Receptive field is 208x208 | |
else: | |
enc_blks = [1, 1, 1, 28] | |
middle_blk_num = 1 | |
dec_blks = [1, 1, 1, 1] | |
width = 2 | |
# Receptive field is 544x544 | |
device = "cpu" | |
for model_name in ["NAFNet", "UNet"]: | |
if model_name == "NAFNet": | |
model = NAFNet( | |
img_channel=3, | |
width=width, | |
middle_blk_num=middle_blk_num, | |
enc_blk_nums=enc_blks, | |
dec_blk_nums=dec_blks, | |
activation=SIMPLE_GATE, | |
layer_norm_flag=False, | |
channel_attention_flag=False | |
) | |
if model_name == "UNet": | |
model = UNet( | |
img_channel=3, | |
width=width, | |
middle_blk_num=middle_blk_num, | |
enc_blk_nums=enc_blks, | |
dec_blk_nums=dec_blks | |
) | |
model.to(device) | |
with torch.no_grad(): | |
x = torch.randn(1, 3, 256, 256).to(device) | |
y = model(x) | |
# print(y.shape) | |
# print(y) | |
# print(model) | |
print(f"{model.count_parameters()/1E3:.2f}k parameters") | |
print(model.receptive_field(size=256 if tiny_recetive_field else 1024, device=device)) | |