Spaces:
Runtime error
Runtime error
#! /usr/bin/env python3 | |
# coding=utf-8 | |
# Copyright 2018 The Uber AI Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Example command with bag of words: | |
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95 | |
Example command with discriminator: | |
python examples/run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95 | |
""" | |
import json | |
from operator import add | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from tqdm import trange | |
from transformers.file_utils import cached_path | |
import time | |
from run_pplm_discrim_train import ClassificationHead | |
PPLM_BOW = 1 | |
PPLM_DISCRIM = 2 | |
PPLM_BOW_DISCRIM = 3 | |
SMALL_CONST = 1e-15 | |
BIG_CONST = 1e10 | |
BAG_OF_WORDS_ARCHIVE_MAP = { | |
'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt", | |
'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt", | |
'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt", | |
'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt", | |
'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt", | |
'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt", | |
'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt", | |
'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt", | |
'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt", | |
'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt", | |
} | |
DISCRIMINATOR_MODELS_PARAMS = { | |
"clickbait": { | |
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt", | |
"class_size": 2, | |
"embed_size": 1024, | |
"class_vocab": {"non_clickbait": 0, "clickbait": 1}, | |
"class_id": {0: "non_clickbait", 1: "clickbait"}, | |
"default_class": 1, | |
"pretrained_model": "gpt2-medium", | |
}, | |
"sentiment": { | |
"url": "http://s.yosinski.com/SST_classifier_head.pt", | |
"class_size": 5, | |
"embed_size": 1024, | |
"class_vocab": {"very_positive": 2, "very_negative": 3}, | |
"class_id": {2: "very_positive", 3: "very_negative"}, | |
"default_class": 3, | |
"pretrained_model": "gpt2-medium", | |
}, | |
"toxicity": { | |
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt", | |
"class_size": 2, | |
"embed_size": 1024, | |
"class_vocab": {"non_toxic": 0, "toxic": 1}, | |
"class_id": {0: "non_toxic", 1: "toxic"}, | |
"default_class": 0, | |
"pretrained_model": "gpt2-medium", | |
}, | |
} | |
def to_var(x, requires_grad=False, volatile=False, device='cuda'): | |
if torch.cuda.is_available() and device == 'cuda': | |
x = x.cuda() | |
elif device != 'cuda': | |
x = x.to(device) | |
return Variable(x, requires_grad=requires_grad, volatile=volatile) | |
def top_k_filter(logits, k, probs=False): | |
""" | |
Masks everything but the k top entries as -infinity (1e10). | |
Used to mask logits such that e^-infinity -> 0 won't contribute to the | |
sum of the denominator. | |
""" | |
if k == 0: | |
return logits | |
else: | |
values = torch.topk(logits, k)[0] | |
batch_mins = values[:, -1].view(-1, 1).expand_as(logits) | |
if probs: | |
return torch.where(logits < batch_mins, | |
torch.ones_like(logits) * 0.0, logits) | |
return torch.where(logits < batch_mins, | |
torch.ones_like(logits) * -BIG_CONST, | |
logits) | |
def perturb_past( | |
past, | |
model, | |
last, | |
unpert_past=None, | |
unpert_logits=None, | |
accumulated_hidden=None, | |
grad_norms=None, | |
stepsize=0.01, | |
one_hot_bows_vectors=None, | |
classifier=None, | |
class_label=None, | |
loss_type=0, | |
num_iterations=3, | |
horizon_length=1, | |
window_length=0, | |
decay=False, | |
gamma=1.5, | |
kl_scale=0.01, | |
device='cuda', | |
): | |
# Generate inital perturbed past | |
grad_accumulator = [ | |
(np.zeros(p.shape).astype("float32")) | |
for p in past | |
] | |
if accumulated_hidden is None: | |
accumulated_hidden = 0 | |
if decay: | |
decay_mask = torch.arange( | |
0., | |
1.0 + SMALL_CONST, | |
1.0 / (window_length) | |
)[1:] | |
else: | |
decay_mask = 1.0 | |
# TODO fix this comment (SUMANTH) | |
# Generate a mask is gradient perturbated is based on a past window | |
_, batch_size, _, curr_length, _ = past[0].shape | |
if curr_length > window_length and window_length > 0: | |
ones_key_val_shape = ( | |
tuple(past[0].shape[:-2]) | |
+ tuple([window_length]) | |
+ tuple(past[0].shape[-1:]) | |
) | |
zeros_key_val_shape = ( | |
tuple(past[0].shape[:-2]) | |
+ tuple([curr_length - window_length]) | |
+ tuple(past[0].shape[-1:]) | |
) | |
ones_mask = torch.ones(ones_key_val_shape) | |
ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3) | |
ones_mask = ones_mask.permute(0, 1, 2, 4, 3) | |
window_mask = torch.cat( | |
(ones_mask, torch.zeros(zeros_key_val_shape)), | |
dim=-2 | |
).to(device) | |
else: | |
window_mask = torch.ones_like(past[0]).to(device) | |
# accumulate perturbations for num_iterations | |
loss_per_iter = [] | |
losses_per_iter = [] | |
new_accumulated_hidden = None | |
for i in range(num_iterations): | |
curr_perturbation = [ | |
to_var(torch.from_numpy(p_), requires_grad=True, device=device) | |
for p_ in grad_accumulator | |
] | |
# Compute hidden using perturbed past | |
perturbed_past = list(map(add, past, curr_perturbation)) | |
_, _, _, curr_length, _ = curr_perturbation[0].shape | |
all_logits, _, all_hidden = model(last, past=perturbed_past) | |
hidden = all_hidden[-1] | |
new_accumulated_hidden = accumulated_hidden + torch.sum( | |
hidden, | |
dim=1 | |
).detach() | |
# TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth) | |
logits = all_logits[:, -1, :] | |
probs = F.softmax(logits, dim=-1) | |
loss = 0.0 | |
losses = torch.zeros(batch_size, device=device) | |
loss_list = [] | |
if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM: | |
for one_hot_bow in one_hot_bows_vectors: | |
bow_logits = torch.mm(probs, torch.t(one_hot_bow)) | |
bow_losses = -torch.log(torch.sum(bow_logits, dim=-1)) | |
losses += bow_losses | |
bow_loss = torch.sum(bow_losses) # sum over batches | |
loss += bow_loss | |
loss_list.append(bow_loss) | |
if loss_type == 2 or loss_type == 3: | |
ce_loss = torch.nn.CrossEntropyLoss(reduction='none') | |
# TODO why we need to do this assignment and not just using unpert_past? (Sumanth) | |
curr_unpert_past = unpert_past | |
curr_probs = torch.unsqueeze(probs, dim=1) | |
wte = model.resize_token_embeddings() | |
for _ in range(horizon_length): | |
inputs_embeds = torch.matmul(curr_probs, wte.weight.data) | |
_, curr_unpert_past, curr_all_hidden = model( | |
past=curr_unpert_past, | |
inputs_embeds=inputs_embeds | |
) | |
curr_hidden = curr_all_hidden[-1] | |
new_accumulated_hidden = new_accumulated_hidden + torch.sum( | |
curr_hidden, dim=1) | |
prediction = classifier(new_accumulated_hidden / | |
(curr_length + 1 + horizon_length)) | |
label = torch.tensor(batch_size * [class_label], | |
device=device, | |
dtype=torch.long) | |
discrim_losses = ce_loss(prediction, label) | |
losses += discrim_losses | |
discrim_loss = discrim_losses.sum(-1) | |
loss += discrim_loss | |
loss_list.append(discrim_loss) | |
kl_loss = 0.0 | |
if kl_scale > 0.0: | |
unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1) | |
unpert_probs = ( | |
unpert_probs + SMALL_CONST * | |
(unpert_probs <= SMALL_CONST).float().to(device).detach() | |
) | |
correction = SMALL_CONST * (probs <= SMALL_CONST).float().to( | |
device).detach() | |
corrected_probs = probs + correction.detach() | |
kl_losses = kl_scale * ( | |
(corrected_probs * (corrected_probs / unpert_probs).log()).sum(-1) | |
) | |
losses += kl_losses | |
kl_loss = kl_losses.sum() | |
loss += kl_loss | |
loss_per_iter.append(loss.data.cpu().numpy()) | |
losses_per_iter.append(losses.data.cpu().numpy()) | |
# compute gradients | |
loss.backward() | |
# calculate gradient norms | |
if grad_norms is not None and loss_type == PPLM_BOW: | |
grad_norms = [ | |
torch.max(grad_norms[index], | |
torch.norm_except_dim(p_.grad * window_mask, dim=1)) | |
#torch.norm(p_.grad * window_mask)) | |
for index, p_ in enumerate(curr_perturbation) | |
] | |
else: | |
grad_norms = [ | |
(torch.norm_except_dim(p_.grad * window_mask, dim=1) + SMALL_CONST) | |
for index, p_ in enumerate(curr_perturbation) | |
] | |
# normalize gradients | |
grad = [ | |
-stepsize * | |
(p_.grad * window_mask / grad_norms[ | |
index] ** gamma).data.cpu().numpy() | |
for index, p_ in enumerate(curr_perturbation) | |
] | |
# accumulate gradient | |
grad_accumulator = list(map(add, grad, grad_accumulator)) | |
# reset gradients, just to make sure | |
for p_ in curr_perturbation: | |
p_.grad.data.zero_() | |
# removing past from the graph | |
new_past = [] | |
for p_ in past: | |
new_past.append(p_.detach()) | |
past = new_past | |
# apply the accumulated perturbations to the past | |
grad_accumulator = [ | |
to_var(torch.from_numpy(p_), requires_grad=True, device=device) | |
for p_ in grad_accumulator | |
] | |
pert_past = list(map(add, past, grad_accumulator)) | |
return pert_past, new_accumulated_hidden, grad_norms, losses_per_iter | |
def get_classifier( | |
name: Optional[str], class_label: Union[str, int], | |
device: str | |
) -> Tuple[Optional[ClassificationHead], Optional[int]]: | |
if name is None: | |
return None, None | |
params = DISCRIMINATOR_MODELS_PARAMS[name] | |
classifier = ClassificationHead( | |
class_size=params['class_size'], | |
embed_size=params['embed_size'] | |
).to(device) | |
if "url" in params: | |
resolved_archive_file = cached_path(params["url"]) | |
elif "path" in params: | |
resolved_archive_file = params["path"] | |
else: | |
raise ValueError("Either url or path have to be specified " | |
"in the discriminator model parameters") | |
classifier.load_state_dict( | |
torch.load(resolved_archive_file, map_location=device)) | |
classifier.eval() | |
if isinstance(class_label, str): | |
if class_label in params["class_vocab"]: | |
label_id = params["class_vocab"][class_label] | |
else: | |
label_id = params["default_class"] | |
elif isinstance(class_label, int): | |
if class_label in set(params["class_vocab"].values()): | |
label_id = class_label | |
else: | |
label_id = params["default_class"] | |
else: | |
label_id = params["default_class"] | |
return classifier, label_id | |
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> \ | |
List[List[List[int]]]: | |
bow_indices = [] | |
for id_or_path in bag_of_words_ids_or_paths: | |
if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP: | |
filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path]) | |
else: | |
filepath = id_or_path | |
with open(filepath, "r") as f: | |
words = f.read().strip().split("\n") | |
bow_indices.append( | |
[tokenizer.encode(word.strip(), add_prefix_space=True, | |
add_special_tokens=False) for word in | |
words]) | |
return bow_indices | |
def build_bows_one_hot_vectors(bow_indices, tokenizer, device='cuda'): | |
if bow_indices is None: | |
return None | |
one_hot_bows_vectors = [] | |
for single_bow in bow_indices: | |
single_bow = list(filter(lambda x: len(x) <= 1, single_bow)) | |
single_bow = torch.tensor(single_bow).to(device) | |
num_words = single_bow.shape[0] | |
one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device) | |
one_hot_bow.scatter_(1, single_bow, 1) | |
one_hot_bows_vectors.append(one_hot_bow) | |
return one_hot_bows_vectors | |
def full_text_generation( | |
model, | |
tokenizer, | |
context=None, | |
num_samples=1, | |
device="cuda", | |
max_time=5, | |
sample=False, | |
discrim=None, | |
class_label=None, | |
bag_of_words=None, | |
length=100, | |
grad_length=10000, | |
stepsize=0.02, | |
num_iterations=3, | |
temperature=1.0, | |
gm_scale=0.9, | |
kl_scale=0.01, | |
top_k=10, | |
window_length=0, | |
horizon_length=1, | |
decay=False, | |
gamma=1.5, | |
): | |
classifier, class_id = get_classifier( | |
discrim, | |
class_label, | |
device | |
) | |
bow_indices = [] | |
if bag_of_words: | |
bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), | |
tokenizer) | |
if bag_of_words and classifier: | |
loss_type = PPLM_BOW_DISCRIM | |
elif bag_of_words: | |
loss_type = PPLM_BOW | |
elif classifier is not None: | |
loss_type = PPLM_DISCRIM | |
else: | |
raise Exception("Specify either a bag of words or a discriminator") | |
# unpert_gen_tok_text = generate_text_pplm( | |
# model=model, | |
# tokenizer=tokenizer, | |
# context=context, | |
# device=device, | |
# length=length, | |
# perturb=False | |
# ) | |
# if device == 'cuda': | |
# torch.cuda.empty_cache() | |
print(context, bow_indices, top_k, gm_scale, kl_scale) | |
pert_gen_tok_text, last_losses = generate_text_pplm( | |
model=model, | |
context=context, | |
tokenizer=tokenizer, | |
device=device, | |
max_time=max_time, | |
sample=sample, | |
perturb=True, | |
bow_indices=bow_indices, | |
classifier=classifier, | |
class_label=class_id, | |
loss_type=loss_type, | |
length=length, | |
grad_length=grad_length, | |
stepsize=stepsize, | |
num_iterations=num_iterations, | |
temperature=temperature, | |
gm_scale=gm_scale, | |
kl_scale=kl_scale, | |
top_k=top_k, | |
window_length=window_length, | |
horizon_length=horizon_length, | |
decay=decay, | |
gamma=gamma, | |
) | |
if device == 'cuda': | |
torch.cuda.empty_cache() | |
return pert_gen_tok_text, last_losses | |
def generate_text_pplm( | |
model, | |
tokenizer, | |
context=None, | |
past=None, | |
device="cuda", | |
max_time=5, | |
perturb=True, | |
bow_indices=None, | |
classifier=None, | |
class_label=None, | |
loss_type=0, | |
length=100, | |
stepsize=0.02, | |
temperature=1.0, | |
top_k=10, | |
sample=False, | |
num_iterations=3, | |
grad_length=10000, | |
horizon_length=1, | |
window_length=0, | |
decay=False, | |
gamma=1.5, | |
gm_scale=0.9, | |
kl_scale=0.01, | |
): | |
output_so_far = None | |
if context: | |
context_t = torch.tensor(context, device=device, dtype=torch.long) | |
while len(context_t.shape) < 2: | |
context_t = context_t.unsqueeze(0) | |
output_so_far = context_t | |
# collect one hot vectors for bags of words | |
one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, | |
device) | |
start = time.time() | |
grad_norms = None | |
last = None | |
losses_this_iter = None | |
losses_in_time = [] | |
for i in trange(length, ascii=True): | |
# Get past/probs for current output, except for last word | |
# Note that GPT takes 2 inputs: past + current_token | |
# run model forward to obtain unperturbed | |
if past is None and output_so_far is not None: | |
last = output_so_far[:, -1:] | |
if output_so_far.shape[1] > 1: | |
_, past, _ = model(output_so_far[:, :-1]) | |
unpert_logits, unpert_past, unpert_all_hidden = model(output_so_far) | |
unpert_last_hidden = unpert_all_hidden[-1] | |
# check if we are abowe grad max length | |
if i >= grad_length: | |
current_stepsize = stepsize * 0 | |
else: | |
current_stepsize = stepsize | |
# modify the past if necessary | |
if not perturb or num_iterations == 0: | |
pert_past = past | |
else: | |
accumulated_hidden = unpert_last_hidden[:, :-1, :] | |
accumulated_hidden = torch.sum(accumulated_hidden, dim=1) | |
if past is not None: | |
pert_past, _, grad_norms, losses_this_iter = perturb_past( | |
past, | |
model, | |
last, | |
unpert_past=unpert_past, | |
unpert_logits=unpert_logits, | |
accumulated_hidden=accumulated_hidden, | |
grad_norms=grad_norms, | |
stepsize=current_stepsize, | |
one_hot_bows_vectors=one_hot_bows_vectors, | |
classifier=classifier, | |
class_label=class_label, | |
loss_type=loss_type, | |
num_iterations=num_iterations, | |
horizon_length=horizon_length, | |
window_length=window_length, | |
decay=decay, | |
gamma=gamma, | |
kl_scale=kl_scale, | |
device=device, | |
) | |
losses_in_time.append(losses_this_iter) | |
else: | |
pert_past = past | |
pert_logits, past, pert_all_hidden = model(last, past=pert_past) | |
pert_logits = pert_logits[:, -1, :] / temperature # + SMALL_CONST | |
pert_probs = F.softmax(pert_logits, dim=-1) | |
# Fuse the modified model and original model | |
if perturb: | |
unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1) | |
pert_probs = ((pert_probs ** gm_scale) * ( | |
unpert_probs ** (1 - gm_scale))) # + SMALL_CONST | |
pert_probs = top_k_filter(pert_probs, k=top_k, | |
probs=True) # + SMALL_CONST | |
# rescale | |
if torch.sum(pert_probs) <= 1: | |
pert_probs = pert_probs / torch.sum(pert_probs) | |
else: | |
pert_logits = top_k_filter(pert_logits, k=top_k) # + SMALL_CONST | |
pert_probs = F.softmax(pert_logits, dim=-1) | |
# sample or greedy | |
if sample: | |
last = torch.multinomial(pert_probs, num_samples=1) | |
else: | |
_, last = torch.topk(pert_probs, k=1, dim=-1) | |
# update context/output_so_far appending the new token | |
output_so_far = ( | |
last if output_so_far is None | |
else torch.cat((output_so_far, last), dim=1) | |
) | |
if time.time() - start > max_time and max_time != -1: | |
break | |
final_losses = losses_this_iter[-1] if losses_this_iter else None | |
return output_so_far, final_losses | |
def set_generic_model_params(discrim_weights, discrim_meta): | |
if discrim_weights is None: | |
raise ValueError('When using a generic discriminator, ' | |
'discrim_weights need to be specified') | |
if discrim_meta is None: | |
raise ValueError('When using a generic discriminator, ' | |
'discrim_meta need to be specified') | |
with open(discrim_meta, 'r') as discrim_meta_file: | |
meta = json.load(discrim_meta_file) | |
meta['path'] = discrim_weights | |
DISCRIMINATOR_MODELS_PARAMS['generic'] = meta | |
def run_model( | |
model, | |
tokenizer, | |
device, | |
raw_text, | |
max_time, | |
bag_of_words=None, | |
discrim=None, | |
discrim_weights=None, | |
discrim_meta=None, | |
discrim_label=-1, | |
stepsize=0.02, | |
length=10, | |
seed=None, | |
temperature=1.0, | |
top_k=10, | |
gm_scale=0.9, | |
kl_scale=0.01, | |
uncond=False, | |
num_iterations=3, | |
grad_length=10000, | |
num_samples=1, | |
horizon_length=1, | |
window_length=0, | |
decay=False, | |
gamma=1.5, | |
use_sampling=False | |
): | |
print(seed) | |
if seed is not None: | |
# set Random seed | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
if discrim == 'generic': | |
set_generic_model_params(discrim_weights, discrim_meta) | |
tokenized_cond_text = [tokenizer.encode( | |
tokenizer.bos_token + raw_text, max_length=512 - length - 1)] * num_samples | |
# Freeze GPT-2 weights | |
for param in model.parameters(): | |
param.requires_grad = False | |
# generate unperturbed and perturbed texts | |
# full_text_generation returns: | |
# unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time | |
pert_gen_tok_text, last_losses = full_text_generation( | |
model=model, | |
tokenizer=tokenizer, | |
context=tokenized_cond_text, | |
device=device, | |
max_time=max_time, | |
num_samples=num_samples, | |
discrim=discrim, | |
class_label=discrim_label, | |
bag_of_words=bag_of_words, | |
length=length, | |
grad_length=grad_length, | |
stepsize=stepsize, | |
num_iterations=num_iterations, | |
temperature=temperature, | |
gm_scale=gm_scale, | |
kl_scale=kl_scale, | |
top_k=top_k, | |
window_length=window_length, | |
horizon_length=horizon_length, | |
decay=decay, | |
gamma=gamma, | |
sample=use_sampling | |
) | |
generated_texts = [] | |
# iterate through the perturbed texts | |
for sample, loss in zip(pert_gen_tok_text.tolist(), last_losses.tolist()): | |
generated_part = sample[len(tokenized_cond_text[0]):] | |
pert_gen_text = tokenizer.decode(generated_part) | |
# keep the prefix, perturbed seq, original seq for each index | |
generated_texts.append( | |
{ | |
"value": pert_gen_text, | |
"tokens": len(generated_part), | |
"loss": loss | |
} | |
) | |
return generated_texts | |