File size: 1,918 Bytes
6cd9596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/**
 * @author alteredq / http://alteredqualia.com/
 *
 * Convolution shader
 * ported from o3d sample to WebGL / GLSL
 * http://o3d.googlecode.com/svn/trunk/samples/convolution.html
 */

THREE.ConvolutionShader = {

	defines: {

		"KERNEL_SIZE_FLOAT": "25.0",
		"KERNEL_SIZE_INT": "25"

	},

	uniforms: {

		"tDiffuse":        { value: null },
		"uImageIncrement": { value: new THREE.Vector2( 0.001953125, 0.0 ) },
		"cKernel":         { value: [] }

	},

	vertexShader: [

		"uniform vec2 uImageIncrement;",

		"varying vec2 vUv;",

		"void main() {",

			"vUv = uv - ( ( KERNEL_SIZE_FLOAT - 1.0 ) / 2.0 ) * uImageIncrement;",
			"gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",

		"}"

	].join( "\n" ),

	fragmentShader: [

		"uniform float cKernel[ KERNEL_SIZE_INT ];",

		"uniform sampler2D tDiffuse;",
		"uniform vec2 uImageIncrement;",

		"varying vec2 vUv;",

		"void main() {",

			"vec2 imageCoord = vUv;",
			"vec4 sum = vec4( 0.0, 0.0, 0.0, 0.0 );",

			"for( int i = 0; i < KERNEL_SIZE_INT; i ++ ) {",

				"sum += texture2D( tDiffuse, imageCoord ) * cKernel[ i ];",
				"imageCoord += uImageIncrement;",

			"}",

			"gl_FragColor = sum;",

		"}"


	].join( "\n" ),

	buildKernel: function ( sigma ) {

		// We lop off the sqrt(2 * pi) * sigma term, since we're going to normalize anyway.

		function gauss( x, sigma ) {

			return Math.exp( - ( x * x ) / ( 2.0 * sigma * sigma ) );

		}

		var i, values, sum, halfWidth, kMaxKernelSize = 25, kernelSize = 2 * Math.ceil( sigma * 3.0 ) + 1;

		if ( kernelSize > kMaxKernelSize ) kernelSize = kMaxKernelSize;
		halfWidth = ( kernelSize - 1 ) * 0.5;

		values = new Array( kernelSize );
		sum = 0.0;
		for ( i = 0; i < kernelSize; ++ i ) {

			values[ i ] = gauss( i - halfWidth, sigma );
			sum += values[ i ];

		}

		// normalize the kernel

		for ( i = 0; i < kernelSize; ++ i ) values[ i ] /= sum;

		return values;

	}

};