julien-c's picture
julien-c HF Staff
do not gitignore the builds
6cd9596
raw
history blame
12.5 kB
var BLOCK = 128;
var startX, startY;
var scene, camera, renderer, loader, sceneId;
importScripts( '../../../build/three.js' );
self.onmessage = function ( e ) {
var data = e.data;
if ( ! data ) return;
if ( data.init ) {
var
width = data.init[ 0 ],
height = data.init[ 1 ];
BLOCK = data.blockSize;
if ( ! renderer ) renderer = new THREE.RaytracingRendererWorker();
if ( ! loader ) loader = new THREE.ObjectLoader();
renderer.setSize( width, height );
// TODO fix passing maxRecursionDepth as parameter.
// if (data.maxRecursionDepth) maxRecursionDepth = data.maxRecursionDepth;
}
if ( data.scene ) {
scene = loader.parse( data.scene );
camera = loader.parse( data.camera );
var meta = data.annex;
scene.traverse( function ( o ) {
if ( o.isPointLight ) {
o.physicalAttenuation = true;
}
var mat = o.material;
if ( ! mat ) return;
var material = meta[ mat.uuid ];
for ( var m in material ) {
mat[ m ] = material[ m ];
}
} );
sceneId = data.sceneId;
}
if ( data.render && scene && camera ) {
startX = data.x;
startY = data.y;
renderer.render( scene, camera );
}
};
/**
* DOM-less version of Raytracing Renderer
* @author mrdoob / http://mrdoob.com/
* @author alteredq / http://alteredqualia.com/
* @author zz95 / http://github.com/zz85
*/
THREE.RaytracingRendererWorker = function () {
console.log( 'THREE.RaytracingRendererWorker', THREE.REVISION );
var maxRecursionDepth = 3;
var canvasWidth, canvasHeight;
var canvasWidthHalf, canvasHeightHalf;
var origin = new THREE.Vector3();
var direction = new THREE.Vector3();
var cameraPosition = new THREE.Vector3();
var raycaster = new THREE.Raycaster( origin, direction );
var ray = raycaster.ray;
var raycasterLight = new THREE.Raycaster();
var rayLight = raycasterLight.ray;
var perspective;
var cameraNormalMatrix = new THREE.Matrix3();
var objects;
var lights = [];
var cache = {};
this.setSize = function ( width, height ) {
canvasWidth = width;
canvasHeight = height;
canvasWidthHalf = Math.floor( canvasWidth / 2 );
canvasHeightHalf = Math.floor( canvasHeight / 2 );
};
//
var spawnRay = ( function () {
var diffuseColor = new THREE.Color();
var specularColor = new THREE.Color();
var lightColor = new THREE.Color();
var schlick = new THREE.Color();
var lightContribution = new THREE.Color();
var eyeVector = new THREE.Vector3();
var lightVector = new THREE.Vector3();
var normalVector = new THREE.Vector3();
var halfVector = new THREE.Vector3();
var localPoint = new THREE.Vector3();
var reflectionVector = new THREE.Vector3();
var tmpVec = new THREE.Vector3();
var tmpColor = [];
for ( var i = 0; i < maxRecursionDepth; i ++ ) {
tmpColor[ i ] = new THREE.Color();
}
return function spawnRay( rayOrigin, rayDirection, outputColor, recursionDepth ) {
outputColor.setRGB( 0, 0, 0 );
//
ray.origin = rayOrigin;
ray.direction = rayDirection;
var intersections = raycaster.intersectObjects( objects, true );
// ray didn't find anything
// (here should come setting of background color?)
if ( intersections.length === 0 ) return;
// ray hit
var intersection = intersections[ 0 ];
var point = intersection.point;
var object = intersection.object;
var material = object.material;
var face = intersection.face;
var geometry = object.geometry;
//
var _object = cache[ object.id ];
eyeVector.subVectors( ray.origin, point ).normalize();
// resolve pixel diffuse color
if ( material.isMeshLambertMaterial ||
material.isMeshPhongMaterial ||
material.isMeshBasicMaterial ) {
diffuseColor.copyGammaToLinear( material.color );
} else {
diffuseColor.setRGB( 1, 1, 1 );
}
if ( material.vertexColors === THREE.FaceColors ) {
diffuseColor.multiply( face.color );
}
// compute light shading
rayLight.origin.copy( point );
if ( material.isMeshBasicMaterial ) {
for ( var i = 0, l = lights.length; i < l; i ++ ) {
var light = lights[ i ];
lightVector.setFromMatrixPosition( light.matrixWorld );
lightVector.sub( point );
rayLight.direction.copy( lightVector ).normalize();
var intersections = raycasterLight.intersectObjects( objects, true );
// point in shadow
if ( intersections.length > 0 ) continue;
// point visible
outputColor.add( diffuseColor );
}
} else if ( material.isMeshLambertMaterial || material.isMeshPhongMaterial ) {
var normalComputed = false;
for ( var i = 0, l = lights.length; i < l; i ++ ) {
var light = lights[ i ];
lightVector.setFromMatrixPosition( light.matrixWorld );
lightVector.sub( point );
rayLight.direction.copy( lightVector ).normalize();
var intersections = raycasterLight.intersectObjects( objects, true );
// point in shadow
if ( intersections.length > 0 ) continue;
// point lit
if ( normalComputed === false ) {
// the same normal can be reused for all lights
// (should be possible to cache even more)
localPoint.copy( point ).applyMatrix4( _object.inverseMatrix );
computePixelNormal( normalVector, localPoint, material.flatShading, face, geometry );
normalVector.applyMatrix3( _object.normalMatrix ).normalize();
normalComputed = true;
}
lightColor.copyGammaToLinear( light.color );
// compute attenuation
var attenuation = 1.0;
if ( light.physicalAttenuation === true ) {
attenuation = lightVector.length();
attenuation = 1.0 / ( attenuation * attenuation );
}
lightVector.normalize();
// compute diffuse
var dot = Math.max( normalVector.dot( lightVector ), 0 );
var diffuseIntensity = dot * light.intensity;
lightContribution.copy( diffuseColor );
lightContribution.multiply( lightColor );
lightContribution.multiplyScalar( diffuseIntensity * attenuation );
outputColor.add( lightContribution );
// compute specular
if ( material.isMeshPhongMaterial ) {
halfVector.addVectors( lightVector, eyeVector ).normalize();
var dotNormalHalf = Math.max( normalVector.dot( halfVector ), 0.0 );
var specularIntensity = Math.max( Math.pow( dotNormalHalf, material.shininess ), 0.0 ) * diffuseIntensity;
var specularNormalization = ( material.shininess + 2.0 ) / 8.0;
specularColor.copyGammaToLinear( material.specular );
var alpha = Math.pow( Math.max( 1.0 - lightVector.dot( halfVector ), 0.0 ), 5.0 );
schlick.r = specularColor.r + ( 1.0 - specularColor.r ) * alpha;
schlick.g = specularColor.g + ( 1.0 - specularColor.g ) * alpha;
schlick.b = specularColor.b + ( 1.0 - specularColor.b ) * alpha;
lightContribution.copy( schlick );
lightContribution.multiply( lightColor );
lightContribution.multiplyScalar( specularNormalization * specularIntensity * attenuation );
outputColor.add( lightContribution );
}
}
}
// reflection / refraction
var reflectivity = material.reflectivity;
if ( ( material.mirror || material.glass ) && reflectivity > 0 && recursionDepth < maxRecursionDepth ) {
if ( material.mirror ) {
reflectionVector.copy( rayDirection );
reflectionVector.reflect( normalVector );
} else if ( material.glass ) {
var eta = material.refractionRatio;
var dotNI = rayDirection.dot( normalVector );
var k = 1.0 - eta * eta * ( 1.0 - dotNI * dotNI );
if ( k < 0.0 ) {
reflectionVector.set( 0, 0, 0 );
} else {
reflectionVector.copy( rayDirection );
reflectionVector.multiplyScalar( eta );
var alpha = eta * dotNI + Math.sqrt( k );
tmpVec.copy( normalVector );
tmpVec.multiplyScalar( alpha );
reflectionVector.sub( tmpVec );
}
}
var theta = Math.max( eyeVector.dot( normalVector ), 0.0 );
var rf0 = reflectivity;
var fresnel = rf0 + ( 1.0 - rf0 ) * Math.pow( ( 1.0 - theta ), 5.0 );
var weight = fresnel;
var zColor = tmpColor[ recursionDepth ];
spawnRay( point, reflectionVector, zColor, recursionDepth + 1 );
if ( material.specular !== undefined ) {
zColor.multiply( material.specular );
}
zColor.multiplyScalar( weight );
outputColor.multiplyScalar( 1 - weight );
outputColor.add( zColor );
}
};
}() );
var computePixelNormal = ( function () {
var vA = new THREE.Vector3();
var vB = new THREE.Vector3();
var vC = new THREE.Vector3();
var tmpVec1 = new THREE.Vector3();
var tmpVec2 = new THREE.Vector3();
var tmpVec3 = new THREE.Vector3();
return function computePixelNormal( outputVector, point, flatShading, face, geometry ) {
var faceNormal = face.normal;
if ( flatShading === true ) {
outputVector.copy( faceNormal );
} else {
var positions = geometry.attributes.position;
var normals = geometry.attributes.normal;
vA.fromBufferAttribute( positions, face.a );
vB.fromBufferAttribute( positions, face.b );
vC.fromBufferAttribute( positions, face.c );
// compute barycentric coordinates
tmpVec3.crossVectors( tmpVec1.subVectors( vB, vA ), tmpVec2.subVectors( vC, vA ) );
var areaABC = faceNormal.dot( tmpVec3 );
tmpVec3.crossVectors( tmpVec1.subVectors( vB, point ), tmpVec2.subVectors( vC, point ) );
var areaPBC = faceNormal.dot( tmpVec3 );
var a = areaPBC / areaABC;
tmpVec3.crossVectors( tmpVec1.subVectors( vC, point ), tmpVec2.subVectors( vA, point ) );
var areaPCA = faceNormal.dot( tmpVec3 );
var b = areaPCA / areaABC;
var c = 1.0 - a - b;
// compute interpolated vertex normal
tmpVec1.fromBufferAttribute( normals, face.a );
tmpVec2.fromBufferAttribute( normals, face.b );
tmpVec3.fromBufferAttribute( normals, face.c );
tmpVec1.multiplyScalar( a );
tmpVec2.multiplyScalar( b );
tmpVec3.multiplyScalar( c );
outputVector.addVectors( tmpVec1, tmpVec2 );
outputVector.add( tmpVec3 );
}
};
}() );
var renderBlock = ( function () {
var blockSize = BLOCK;
var data = new Uint8ClampedArray( blockSize * blockSize * 4 );
var pixelColor = new THREE.Color();
return function renderBlock( blockX, blockY ) {
var index = 0;
for ( var y = 0; y < blockSize; y ++ ) {
for ( var x = 0; x < blockSize; x ++, index += 4 ) {
// spawn primary ray at pixel position
origin.copy( cameraPosition );
direction.set( x + blockX - canvasWidthHalf, - ( y + blockY - canvasHeightHalf ), - perspective );
direction.applyMatrix3( cameraNormalMatrix ).normalize();
spawnRay( origin, direction, pixelColor, 0 );
// convert from linear to gamma
data[ index + 0 ] = Math.sqrt( pixelColor.r ) * 255;
data[ index + 1 ] = Math.sqrt( pixelColor.g ) * 255;
data[ index + 2 ] = Math.sqrt( pixelColor.b ) * 255;
data[ index + 3 ] = 255;
}
}
// Use transferable objects! :)
self.postMessage( {
data: data.buffer,
blockX: blockX,
blockY: blockY,
blockSize: blockSize,
sceneId: sceneId,
time: Date.now(), // time for this renderer
}, [ data.buffer ] );
data = new Uint8ClampedArray( blockSize * blockSize * 4 );
};
}() );
this.render = function ( scene, camera ) {
// update scene graph
if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
// update camera matrices
if ( camera.parent === null ) camera.updateMatrixWorld();
cameraPosition.setFromMatrixPosition( camera.matrixWorld );
//
cameraNormalMatrix.getNormalMatrix( camera.matrixWorld );
perspective = 0.5 / Math.tan( THREE.Math.degToRad( camera.fov * 0.5 ) ) * canvasHeight;
objects = scene.children;
// collect lights and set up object matrices
lights.length = 0;
scene.traverse( function ( object ) {
if ( object.isPointLight ) {
lights.push( object );
}
if ( cache[ object.id ] === undefined ) {
cache[ object.id ] = {
normalMatrix: new THREE.Matrix3(),
inverseMatrix: new THREE.Matrix4()
};
}
var _object = cache[ object.id ];
_object.normalMatrix.getNormalMatrix( object.matrixWorld );
_object.inverseMatrix.getInverse( object.matrixWorld );
} );
renderBlock( startX, startY );
};
};
Object.assign( THREE.RaytracingRendererWorker.prototype, THREE.EventDispatcher.prototype );