Spaces:
Sleeping
Sleeping
File size: 6,169 Bytes
61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 61c1a82 d340145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import google.generativeai as genai
import fitz # PyMuPDF for PDF text extraction
import streamlit as st
import spacy
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from docx import Document
import re
from nltk.corpus import words
import dateparser
from datetime import datetime
import os
# Load SpaCy model for dependency parsing
nlp_spacy = spacy.load('en_core_web_sm')
# Load the NER model
tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner")
model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner")
nlp_ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
english_words = set(words.words())
# Your hardcoded API key
api_key ="AIzaSyCG-qpFRqJc0QOJT-AcAaO5XIEdE-nk3Tc"
# Function to authenticate with Gemini API
def authenticate_gemini(api_key):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name="gemini-1.5-flash-latest")
return model
except Exception as e:
st.error(f"Error configuring Gemini API: {e}")
return None
# Function to filter and refine extracted ORG entities
def refine_org_entities(entities):
refined_entities = set()
company_suffixes = ['Inc', 'LLC', 'Corporation', 'Corp', 'Ltd', 'Co', 'GmbH', 'S.A.']
for entity in entities:
if any(entity.endswith(suffix) for suffix in company_suffixes):
refined_entities.add(entity)
elif re.match(r'([A-Z][a-z]+)\s([A-Z][a-z]+)', entity):
refined_entities.add(entity)
return list(refined_entities)
# Function to extract ORG entities using NER
def extract_orgs(text):
ner_results = nlp_ner(text)
orgs = set()
for entity in ner_results:
if entity['entity_group'] == 'ORG':
orgs.add(entity['word'])
return refine_org_entities(orgs)
# Extract text from PDF
def extract_text_from_pdf(pdf_file):
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text()
return text
# Extract text from DOCX
def extract_text_from_doc(doc_file):
doc = Document(doc_file)
text = '\n'.join([para.text for para in doc.paragraphs])
return text
# Summary generation function
def generate_summary(text, model):
prompt = f"Can you summarize the following document in 100 words?\n\n{text}"
try:
response = model.generate_content(prompt)
return response.text
except Exception as e:
return f"Error generating summary: {str(e)}"
# Additional resume parsing functions
def extract_experience(doc):
experience = 0
for ent in doc.ents:
if ent.label_ == "DATE":
date = dateparser.parse(ent.text)
if date:
experience = max(experience, datetime.now().year - date.year)
return experience
def extract_phone(text):
phone_patterns = [
r'\b(?:\+?1[-.\s]?)?(?:\(\d{3}\)|\d{3})[-.\s]?\d{3}[-.\s]?\d{4}\b',
r'\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b'
]
for pattern in phone_patterns:
match = re.search(pattern, text)
if match:
return match.group()
return "Not found"
def extract_email(text):
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
match = re.search(email_pattern, text)
return match.group() if match else "Not found"
def extract_colleges(doc):
colleges = set()
edu_keywords = ["university", "college", "institute", "school"]
for ent in doc.ents:
if ent.label_ == "ORG" and any(keyword in ent.text.lower() for keyword in edu_keywords):
colleges.add(ent.text)
return list(colleges)
def extract_linkedin(text):
linkedin_pattern = r'(?:https?:)?\/\/(?:[\w]+\.)?linkedin\.com\/in\/[A-z0-9_-]+\/?'
match = re.search(linkedin_pattern, text)
return match.group() if match else "Not found"
# Main function to process the resume and return the analysis
def main():
st.title("Resume Analyzer")
st.write("Upload a resume to extract information")
# File uploader for resume input
uploaded_file = st.file_uploader("Choose a PDF or DOCX file", type=["pdf", "docx", "doc"])
if uploaded_file is not None:
try:
# Authenticate with Google Gemini API
model = authenticate_gemini(api_key)
if model is None:
return
# Extract text from the uploaded resume
file_ext = uploaded_file.name.split('.')[-1].lower()
if file_ext == 'pdf':
resume_text = extract_text_from_pdf(uploaded_file)
elif file_ext in ['docx', 'doc']:
resume_text = extract_text_from_doc(uploaded_file)
else:
st.error("Unsupported file format.")
return
if not resume_text.strip():
st.error("The resume appears to be empty.")
return
# Process the resume
doc = nlp_spacy(resume_text)
# Extract information
companies = extract_orgs(resume_text)
summary = generate_summary(resume_text, model)
experience = extract_experience(doc)
phone = extract_phone(resume_text)
email = extract_email(resume_text)
colleges = extract_colleges(doc)
linkedin = extract_linkedin(resume_text)
# Display results
st.subheader("Extracted Information")
st.write(f"*Years of Experience:* {experience}")
st.write("*Companies Worked For:*")
st.write(", ".join(companies))
st.write(f"*Phone Number:* {phone}")
st.write(f"*Email ID:* {email}")
st.write("*Colleges Attended:*")
st.write(", ".join(colleges))
st.write(f"*LinkedIn ID:* {linkedin}")
st.write("Generated Summary")
st.write(summary)
except Exception as e:
st.error(f"Error during processing: {e}")
if __name__ == "__main__":
main()
|