baohuynhbk14's picture
Enhance logging in http_bot and clean up conversation message handling; add .gitignore for better project management
6db93f3
raw
history blame
21.1 kB
import spaces
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re
import torch
import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from models import load_image
from constants import LOGDIR
from utils import (
build_logger,
server_error_msg,
violates_moderation,
moderation_msg,
load_image_from_base64,
get_log_filename,
)
from threading import Thread
import traceback
# import torch
from conversation import Conversation
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_default_device('cuda')
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "Vintern-1B-3.5-Demo Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
@spaces.GPU(duration=10)
def make_zerogpu_happy():
pass
def write2file(path, content):
lock = FileLock(f"{path}.lock")
with lock:
with open(path, "a") as fout:
fout.write(content)
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def init_state(state=None):
if state is not None:
del state
return Conversation()
def vote_last_response(state, liked, request: gr.Request):
conv_data = {
"tstamp": round(time.time(), 4),
"like": liked,
"model": 'Vintern-1B-v3',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, True, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, False, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def vote_selected_response(
state, request: gr.Request, data: gr.LikeData
):
logger.info(
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
)
conv_data = {
"tstamp": round(time.time(), 4),
"like": data.liked,
"index": data.index,
"model": 'Vintern-1B-v3',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
return
def flag_last_response(state, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
# state.messages[-1][-1] = None
state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1)
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = init_state()
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def add_text(state, message, system_prompt, request: gr.Request):
print(f"state: {state}")
if not state:
state = init_state()
images = message.get("files", [])
text = message.get("text", "").strip()
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
# import pdb; pdb.set_trace()
textbox = gr.MultimodalTextbox(value=None, interactive=False)
if len(text) <= 0 and len(images) == 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
textbox = gr.MultimodalTextbox(
value={"text": moderation_msg}, interactive=True
)
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
images = [Image.open(path).convert("RGB") for path in images]
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
state = init_state(state)
state.set_system_message(system_prompt)
state.append_message(Conversation.USER, text, images)
state.skip_next = False
return (state, state.to_gradio_chatbot(), textbox) + (
disable_btn,
) * 5
model_name = "5CD-AI/Vintern-1B-v3_5"
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
@spaces.GPU
def predict(message,
image_path,
history,
max_input_tiles=6,
temperature=1.0,
max_output_tokens=700,
top_p=0.7,
repetition_penalty=2.5):
pixel_values = load_image(image_path, max_num=max_input_tiles).to(torch.bfloat16).cuda()
generation_config = dict(temperature=temperature, max_new_tokens= max_output_tokens, top_p=top_p, do_sample=False, num_beams = 3, repetition_penalty=repetition_penalty)
if pixel_values is not None:
question = '<image>\n'+message
else:
question = message
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
return response, conv_history
def http_bot(
state,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
max_input_tiles,
request: gr.Request,
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if hasattr(state, "skip_next") and state.skip_next:
# This generate call is skipped due to invalid inputs
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (no_change_btn,) * 5
return
if model is None:
state.update_message(Conversation.ASSISTANT, server_error_msg)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
all_images = state.get_images(source=state.USER)
all_image_paths = [state.save_image(image) for image in all_images]
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
try:
# Stream output
message = state.get_user_message(source=state.USER)
logger.info(f"==== User message ====\n{message}")
logger.info(f"==== Image paths ====\n{all_image_paths}")
logger.info(f"==== History ====\n{state.get_prompt()}")
response, conv_history = predict(message, all_image_paths[0], max_input_tiles, temperature, max_new_tokens, top_p, repetition_penalty)
logger.info(f"==== AI history ====\n{conv_history}")
# response = "This is a test response"
buffer = ""
for new_text in response:
buffer += new_text
state.update_message(Conversation.ASSISTANT, buffer + state.streaming_placeholder, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
except Exception as e:
logger.error(f"Error in http_bot: {e} \n{traceback.format_exc()}")
state.update_message(Conversation.ASSISTANT, server_error_msg, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
ai_response = state.return_last_message()
logger.info(f"==== AI response ====\n{ai_response}")
state.end_of_current_turn()
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{buffer}")
data = {
"tstamp": round(finish_tstamp, 4),
"like": None,
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_paths,
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(data) + "\n")
# <h1 style="font-size: 28px; font-weight: bold;">Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</h1>
title_html = """
<div style="text-align: center;">
<img src="https://lh3.googleusercontent.com/pw/AP1GczMmW-aFQ4dNaR_LCAllh4UZLLx9fTZ1ITHeGVMWx-1bwlIWz4VsWJSGb3_9C7CQfvboqJH41y2Sbc5ToC9ZmKeV4-buf_DEevIMU0HtaLWgHAPOqBiIbG6LaE8CvDqniLZzvB9UX8TR_-YgvYzPFt2z=w1472-h832-s-no-gm?authuser=0" style="height: 100; width: 100%;">
<p>🔥Vintern-1B-v3_5🔥</p>
<p>An Efficient Multimodal Large Language Model for Vietnamese</p>
<a href="https://huggingface.co/papers/2408.12480">[📖 Vintern Paper]</a>
<a href="https://huggingface.co/5CD-AI">[🤗 Huggingface]</a>
</div>
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
min-width: min(120px,100%);
}
.gradient-text {
font-size: 28px;
width: auto;
font-weight: bold;
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
background-clip: text;
-webkit-background-clip: text;
color: transparent;
}
.plain-text {
font-size: 22px;
width: auto;
font-weight: bold;
}
"""
# js = """
# function createWaveAnimation() {
# const text = document.getElementById('text');
# var i = 0;
# setInterval(function() {
# const colors = [
# 'red, orange, yellow, green, blue, indigo, violet, purple',
# 'orange, yellow, green, blue, indigo, violet, purple, red',
# 'yellow, green, blue, indigo, violet, purple, red, orange',
# 'green, blue, indigo, violet, purple, red, orange, yellow',
# 'blue, indigo, violet, purple, red, orange, yellow, green',
# 'indigo, violet, purple, red, orange, yellow, green, blue',
# 'violet, purple, red, orange, yellow, green, blue, indigo',
# 'purple, red, orange, yellow, green, blue, indigo, violet',
# ];
# const angle = 45;
# const colorIndex = i % colors.length;
# text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
# text.style.webkitBackgroundClip = 'text';
# text.style.backgroundClip = 'text';
# text.style.color = 'transparent';
# text.style.fontSize = '28px';
# text.style.width = 'auto';
# text.textContent = 'Vintern-1B';
# text.style.fontWeight = 'bold';
# i += 1;
# }, 200);
# const params = new URLSearchParams(window.location.search);
# url_params = Object.fromEntries(params);
# // console.log(url_params);
# // console.log('hello world...');
# // console.log(window.location.search);
# // console.log('hello world...');
# // alert(window.location.search)
# // alert(url_params);
# return url_params;
# }
# """
def build_demo():
textbox = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(
title="Vintern-1B-v3_5-Demo",
theme=gr.themes.Default(),
css=block_css,
) as demo:
state = gr.State()
with gr.Row():
with gr.Column(scale=2):
# gr.Image('./gallery/logo-47b364d3.jpg')
gr.HTML(title_html)
with gr.Accordion("Settings", open=False) as setting_row:
system_prompt = gr.Textbox(
value="Bạn là một trợ lý AI đa phương thức hữu ích, hãy trả lời câu hỏi người dùng một cách chi tiết.",
label="System Prompt",
interactive=True,
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.02,
interactive=True,
label="Repetition penalty",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
max_input_tiles = gr.Slider(
minimum=1,
maximum=32,
value=12,
step=1,
interactive=True,
label="Max input tiles (control the image size)",
)
examples = gr.Examples(
examples=[
[
{
"files": [
"gallery/14.jfif",
],
"text": "Please help me analyze this picture.",
}
],
[
{
"files": [
"gallery/1-2.PNG",
],
"text": "Implement this flow chart using python",
}
],
[
{
"files": [
"gallery/15.PNG",
],
"text": "Please help me analyze this picture.",
}
],
],
inputs=[textbox],
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Vintern-1B-v3_5-Demo",
height=580,
show_copy_button=True,
show_share_button=True,
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="🔄 Regenerate", interactive=False
)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
gr.Markdown(tos_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
chatbot.like(
vote_selected_response,
[state],
[],
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate,
[state, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
logger.info(args)
demo = build_demo()
demo.queue(api_open=False).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=args.concurrency_count,
)