Spaces:
Running
on
Zero
Running
on
Zero
Enhance logging in http_bot and clean up conversation message handling; add .gitignore for better project management
6db93f3
import spaces | |
import argparse | |
from ast import parse | |
import datetime | |
import json | |
import os | |
import time | |
import hashlib | |
import re | |
import torch | |
import gradio as gr | |
import requests | |
import random | |
from filelock import FileLock | |
from io import BytesIO | |
from PIL import Image, ImageDraw, ImageFont | |
from models import load_image | |
from constants import LOGDIR | |
from utils import ( | |
build_logger, | |
server_error_msg, | |
violates_moderation, | |
moderation_msg, | |
load_image_from_base64, | |
get_log_filename, | |
) | |
from threading import Thread | |
import traceback | |
# import torch | |
from conversation import Conversation | |
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
torch.set_default_device('cuda') | |
logger = build_logger("gradio_web_server", "gradio_web_server.log") | |
headers = {"User-Agent": "Vintern-1B-3.5-Demo Client"} | |
no_change_btn = gr.Button() | |
enable_btn = gr.Button(interactive=True) | |
disable_btn = gr.Button(interactive=False) | |
def make_zerogpu_happy(): | |
pass | |
def write2file(path, content): | |
lock = FileLock(f"{path}.lock") | |
with lock: | |
with open(path, "a") as fout: | |
fout.write(content) | |
get_window_url_params = """ | |
function() { | |
const params = new URLSearchParams(window.location.search); | |
url_params = Object.fromEntries(params); | |
console.log(url_params); | |
return url_params; | |
} | |
""" | |
def init_state(state=None): | |
if state is not None: | |
del state | |
return Conversation() | |
def vote_last_response(state, liked, request: gr.Request): | |
conv_data = { | |
"tstamp": round(time.time(), 4), | |
"like": liked, | |
"model": 'Vintern-1B-v3', | |
"state": state.dict(), | |
"ip": request.client.host, | |
} | |
write2file(get_log_filename(), json.dumps(conv_data) + "\n") | |
def upvote_last_response(state, request: gr.Request): | |
logger.info(f"upvote. ip: {request.client.host}") | |
vote_last_response(state, True, request) | |
textbox = gr.MultimodalTextbox(value=None, interactive=True) | |
return (textbox,) + (disable_btn,) * 3 | |
def downvote_last_response(state, request: gr.Request): | |
logger.info(f"downvote. ip: {request.client.host}") | |
vote_last_response(state, False, request) | |
textbox = gr.MultimodalTextbox(value=None, interactive=True) | |
return (textbox,) + (disable_btn,) * 3 | |
def vote_selected_response( | |
state, request: gr.Request, data: gr.LikeData | |
): | |
logger.info( | |
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}" | |
) | |
conv_data = { | |
"tstamp": round(time.time(), 4), | |
"like": data.liked, | |
"index": data.index, | |
"model": 'Vintern-1B-v3', | |
"state": state.dict(), | |
"ip": request.client.host, | |
} | |
write2file(get_log_filename(), json.dumps(conv_data) + "\n") | |
return | |
def flag_last_response(state, request: gr.Request): | |
logger.info(f"flag. ip: {request.client.host}") | |
vote_last_response(state, "flag", request) | |
textbox = gr.MultimodalTextbox(value=None, interactive=True) | |
return (textbox,) + (disable_btn,) * 3 | |
def regenerate(state, image_process_mode, request: gr.Request): | |
logger.info(f"regenerate. ip: {request.client.host}") | |
# state.messages[-1][-1] = None | |
state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1) | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
textbox = gr.MultimodalTextbox(value=None, interactive=True) | |
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5 | |
def clear_history(request: gr.Request): | |
logger.info(f"clear_history. ip: {request.client.host}") | |
state = init_state() | |
textbox = gr.MultimodalTextbox(value=None, interactive=True) | |
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5 | |
def add_text(state, message, system_prompt, request: gr.Request): | |
print(f"state: {state}") | |
if not state: | |
state = init_state() | |
images = message.get("files", []) | |
text = message.get("text", "").strip() | |
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") | |
# import pdb; pdb.set_trace() | |
textbox = gr.MultimodalTextbox(value=None, interactive=False) | |
if len(text) <= 0 and len(images) == 0: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5 | |
if args.moderate: | |
flagged = violates_moderation(text) | |
if flagged: | |
state.skip_next = True | |
textbox = gr.MultimodalTextbox( | |
value={"text": moderation_msg}, interactive=True | |
) | |
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5 | |
images = [Image.open(path).convert("RGB") for path in images] | |
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0: | |
state = init_state(state) | |
state.set_system_message(system_prompt) | |
state.append_message(Conversation.USER, text, images) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), textbox) + ( | |
disable_btn, | |
) * 5 | |
model_name = "5CD-AI/Vintern-1B-v3_5" | |
model = AutoModel.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) | |
def predict(message, | |
image_path, | |
history, | |
max_input_tiles=6, | |
temperature=1.0, | |
max_output_tokens=700, | |
top_p=0.7, | |
repetition_penalty=2.5): | |
pixel_values = load_image(image_path, max_num=max_input_tiles).to(torch.bfloat16).cuda() | |
generation_config = dict(temperature=temperature, max_new_tokens= max_output_tokens, top_p=top_p, do_sample=False, num_beams = 3, repetition_penalty=repetition_penalty) | |
if pixel_values is not None: | |
question = '<image>\n'+message | |
else: | |
question = message | |
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) | |
return response, conv_history | |
def http_bot( | |
state, | |
temperature, | |
top_p, | |
repetition_penalty, | |
max_new_tokens, | |
max_input_tiles, | |
request: gr.Request, | |
): | |
logger.info(f"http_bot. ip: {request.client.host}") | |
start_tstamp = time.time() | |
if hasattr(state, "skip_next") and state.skip_next: | |
# This generate call is skipped due to invalid inputs | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=False), | |
) + (no_change_btn,) * 5 | |
return | |
if model is None: | |
state.update_message(Conversation.ASSISTANT, server_error_msg) | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=False), | |
disable_btn, | |
disable_btn, | |
disable_btn, | |
enable_btn, | |
enable_btn, | |
) | |
return | |
all_images = state.get_images(source=state.USER) | |
all_image_paths = [state.save_image(image) for image in all_images] | |
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder) | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=False), | |
) + (disable_btn,) * 5 | |
try: | |
# Stream output | |
message = state.get_user_message(source=state.USER) | |
logger.info(f"==== User message ====\n{message}") | |
logger.info(f"==== Image paths ====\n{all_image_paths}") | |
logger.info(f"==== History ====\n{state.get_prompt()}") | |
response, conv_history = predict(message, all_image_paths[0], max_input_tiles, temperature, max_new_tokens, top_p, repetition_penalty) | |
logger.info(f"==== AI history ====\n{conv_history}") | |
# response = "This is a test response" | |
buffer = "" | |
for new_text in response: | |
buffer += new_text | |
state.update_message(Conversation.ASSISTANT, buffer + state.streaming_placeholder, None) | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=False), | |
) + (disable_btn,) * 5 | |
except Exception as e: | |
logger.error(f"Error in http_bot: {e} \n{traceback.format_exc()}") | |
state.update_message(Conversation.ASSISTANT, server_error_msg, None) | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=True), | |
) + ( | |
disable_btn, | |
disable_btn, | |
disable_btn, | |
enable_btn, | |
enable_btn, | |
) | |
return | |
ai_response = state.return_last_message() | |
logger.info(f"==== AI response ====\n{ai_response}") | |
state.end_of_current_turn() | |
yield ( | |
state, | |
state.to_gradio_chatbot(), | |
gr.MultimodalTextbox(interactive=True), | |
) + (enable_btn,) * 5 | |
finish_tstamp = time.time() | |
logger.info(f"{buffer}") | |
data = { | |
"tstamp": round(finish_tstamp, 4), | |
"like": None, | |
"model": model_name, | |
"start": round(start_tstamp, 4), | |
"finish": round(start_tstamp, 4), | |
"state": state.dict(), | |
"images": all_image_paths, | |
"ip": request.client.host, | |
} | |
write2file(get_log_filename(), json.dumps(data) + "\n") | |
# <h1 style="font-size: 28px; font-weight: bold;">Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</h1> | |
title_html = """ | |
<div style="text-align: center;"> | |
<img src="https://lh3.googleusercontent.com/pw/AP1GczMmW-aFQ4dNaR_LCAllh4UZLLx9fTZ1ITHeGVMWx-1bwlIWz4VsWJSGb3_9C7CQfvboqJH41y2Sbc5ToC9ZmKeV4-buf_DEevIMU0HtaLWgHAPOqBiIbG6LaE8CvDqniLZzvB9UX8TR_-YgvYzPFt2z=w1472-h832-s-no-gm?authuser=0" style="height: 100; width: 100%;"> | |
<p>🔥Vintern-1B-v3_5🔥</p> | |
<p>An Efficient Multimodal Large Language Model for Vietnamese</p> | |
<a href="https://huggingface.co/papers/2408.12480">[📖 Vintern Paper]</a> | |
<a href="https://huggingface.co/5CD-AI">[🤗 Huggingface]</a> | |
</div> | |
""" | |
tos_markdown = """ | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. | |
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""" | |
# .gradio-container {margin: 5px 10px 0 10px !important}; | |
block_css = """ | |
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;}; | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
.gradient-text { | |
font-size: 28px; | |
width: auto; | |
font-weight: bold; | |
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet); | |
background-clip: text; | |
-webkit-background-clip: text; | |
color: transparent; | |
} | |
.plain-text { | |
font-size: 22px; | |
width: auto; | |
font-weight: bold; | |
} | |
""" | |
# js = """ | |
# function createWaveAnimation() { | |
# const text = document.getElementById('text'); | |
# var i = 0; | |
# setInterval(function() { | |
# const colors = [ | |
# 'red, orange, yellow, green, blue, indigo, violet, purple', | |
# 'orange, yellow, green, blue, indigo, violet, purple, red', | |
# 'yellow, green, blue, indigo, violet, purple, red, orange', | |
# 'green, blue, indigo, violet, purple, red, orange, yellow', | |
# 'blue, indigo, violet, purple, red, orange, yellow, green', | |
# 'indigo, violet, purple, red, orange, yellow, green, blue', | |
# 'violet, purple, red, orange, yellow, green, blue, indigo', | |
# 'purple, red, orange, yellow, green, blue, indigo, violet', | |
# ]; | |
# const angle = 45; | |
# const colorIndex = i % colors.length; | |
# text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`; | |
# text.style.webkitBackgroundClip = 'text'; | |
# text.style.backgroundClip = 'text'; | |
# text.style.color = 'transparent'; | |
# text.style.fontSize = '28px'; | |
# text.style.width = 'auto'; | |
# text.textContent = 'Vintern-1B'; | |
# text.style.fontWeight = 'bold'; | |
# i += 1; | |
# }, 200); | |
# const params = new URLSearchParams(window.location.search); | |
# url_params = Object.fromEntries(params); | |
# // console.log(url_params); | |
# // console.log('hello world...'); | |
# // console.log(window.location.search); | |
# // console.log('hello world...'); | |
# // alert(window.location.search) | |
# // alert(url_params); | |
# return url_params; | |
# } | |
# """ | |
def build_demo(): | |
textbox = gr.MultimodalTextbox( | |
interactive=True, | |
file_types=["image", "video"], | |
placeholder="Enter message or upload file...", | |
show_label=False, | |
) | |
with gr.Blocks( | |
title="Vintern-1B-v3_5-Demo", | |
theme=gr.themes.Default(), | |
css=block_css, | |
) as demo: | |
state = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# gr.Image('./gallery/logo-47b364d3.jpg') | |
gr.HTML(title_html) | |
with gr.Accordion("Settings", open=False) as setting_row: | |
system_prompt = gr.Textbox( | |
value="Bạn là một trợ lý AI đa phương thức hữu ích, hãy trả lời câu hỏi người dùng một cách chi tiết.", | |
label="System Prompt", | |
interactive=True, | |
) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.2, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
interactive=True, | |
label="Top P", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=1.0, | |
maximum=1.5, | |
value=1.1, | |
step=0.02, | |
interactive=True, | |
label="Repetition penalty", | |
) | |
max_output_tokens = gr.Slider( | |
minimum=0, | |
maximum=4096, | |
value=1024, | |
step=64, | |
interactive=True, | |
label="Max output tokens", | |
) | |
max_input_tiles = gr.Slider( | |
minimum=1, | |
maximum=32, | |
value=12, | |
step=1, | |
interactive=True, | |
label="Max input tiles (control the image size)", | |
) | |
examples = gr.Examples( | |
examples=[ | |
[ | |
{ | |
"files": [ | |
"gallery/14.jfif", | |
], | |
"text": "Please help me analyze this picture.", | |
} | |
], | |
[ | |
{ | |
"files": [ | |
"gallery/1-2.PNG", | |
], | |
"text": "Implement this flow chart using python", | |
} | |
], | |
[ | |
{ | |
"files": [ | |
"gallery/15.PNG", | |
], | |
"text": "Please help me analyze this picture.", | |
} | |
], | |
], | |
inputs=[textbox], | |
) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
label="Vintern-1B-v3_5-Demo", | |
height=580, | |
show_copy_button=True, | |
show_share_button=True, | |
avatar_images=[ | |
"assets/human.png", | |
"assets/assistant.png", | |
], | |
bubble_full_width=False, | |
) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="👍 Upvote", interactive=False) | |
downvote_btn = gr.Button(value="👎 Downvote", interactive=False) | |
flag_btn = gr.Button(value="⚠️ Flag", interactive=False) | |
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) | |
regenerate_btn = gr.Button( | |
value="🔄 Regenerate", interactive=False | |
) | |
clear_btn = gr.Button(value="🗑️ Clear", interactive=False) | |
gr.Markdown(tos_markdown) | |
url_params = gr.JSON(visible=False) | |
# Register listeners | |
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] | |
upvote_btn.click( | |
upvote_last_response, | |
[state], | |
[textbox, upvote_btn, downvote_btn, flag_btn], | |
) | |
downvote_btn.click( | |
downvote_last_response, | |
[state], | |
[textbox, upvote_btn, downvote_btn, flag_btn], | |
) | |
chatbot.like( | |
vote_selected_response, | |
[state], | |
[], | |
) | |
flag_btn.click( | |
flag_last_response, | |
[state], | |
[textbox, upvote_btn, downvote_btn, flag_btn], | |
) | |
regenerate_btn.click( | |
regenerate, | |
[state, system_prompt], | |
[state, chatbot, textbox] + btn_list, | |
).then( | |
http_bot, | |
[ | |
state, | |
temperature, | |
top_p, | |
repetition_penalty, | |
max_output_tokens, | |
max_input_tiles, | |
], | |
[state, chatbot, textbox] + btn_list, | |
) | |
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list) | |
textbox.submit( | |
add_text, | |
[state, textbox, system_prompt], | |
[state, chatbot, textbox] + btn_list, | |
).then( | |
http_bot, | |
[ | |
state, | |
temperature, | |
top_p, | |
repetition_penalty, | |
max_output_tokens, | |
max_input_tiles, | |
], | |
[state, chatbot, textbox] + btn_list, | |
) | |
submit_btn.click( | |
add_text, | |
[state, textbox, system_prompt], | |
[state, chatbot, textbox] + btn_list, | |
).then( | |
http_bot, | |
[ | |
state, | |
temperature, | |
top_p, | |
repetition_penalty, | |
max_output_tokens, | |
max_input_tiles, | |
], | |
[state, chatbot, textbox] + btn_list, | |
) | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="0.0.0.0") | |
parser.add_argument("--port", type=int, default=7860) | |
parser.add_argument("--concurrency-count", type=int, default=10) | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--moderate", action="store_true") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
logger.info(args) | |
demo = build_demo() | |
demo.queue(api_open=False).launch( | |
server_name=args.host, | |
server_port=args.port, | |
share=args.share, | |
max_threads=args.concurrency_count, | |
) | |