Spaces:
Runtime error
Runtime error
File size: 9,980 Bytes
d73c58e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
"""
Agentic sampling loop that calls the Anthropic API and local implementation of computer use tools.
"""
import time
import json
from collections.abc import Callable
from enum import StrEnum
from anthropic import APIResponse
from anthropic.types.beta import BetaContentBlock, BetaMessage, BetaMessageParam
from computer_use_demo.tools import ToolResult
import torch
from computer_use_demo.gui_agent.planner.anthropic_agent import AnthropicActor
from computer_use_demo.executor.anthropic_executor import AnthropicExecutor
from computer_use_demo.gui_agent.planner.api_vlm_planner import APIVLMPlanner
from computer_use_demo.gui_agent.planner.local_vlm_planner import LocalVLMPlanner
from computer_use_demo.gui_agent.actor.showui_agent import ShowUIActor
from computer_use_demo.executor.showui_executor import ShowUIExecutor
from computer_use_demo.gui_agent.actor.uitars_agent import UITARS_Actor
from computer_use_demo.tools.colorful_text import colorful_text_showui, colorful_text_vlm
from computer_use_demo.tools.screen_capture import get_screenshot
from computer_use_demo.gui_agent.llm_utils.oai import encode_image
from computer_use_demo.tools.logger import logger
class APIProvider(StrEnum):
ANTHROPIC = "anthropic"
BEDROCK = "bedrock"
VERTEX = "vertex"
OPENAI = "openai"
QWEN = "qwen"
SSH = "ssh"
PROVIDER_TO_DEFAULT_MODEL_NAME: dict[APIProvider, str] = {
APIProvider.ANTHROPIC: "claude-3-5-sonnet-20241022",
APIProvider.BEDROCK: "anthropic.claude-3-5-sonnet-20241022-v2:0",
APIProvider.VERTEX: "claude-3-5-sonnet-v2@20241022",
APIProvider.OPENAI: "gpt-4o",
APIProvider.QWEN: "qwen2vl",
APIProvider.SSH: "qwen2-vl-2b",
}
def sampling_loop_sync(
*,
planner_model: str,
planner_provider: APIProvider | None,
actor_model: str,
actor_provider: APIProvider | None,
system_prompt_suffix: str,
messages: list[BetaMessageParam],
output_callback: Callable[[BetaContentBlock], None],
tool_output_callback: Callable[[ToolResult, str], None],
api_response_callback: Callable[[APIResponse[BetaMessage]], None],
api_key: str,
only_n_most_recent_images: int | None = None,
max_tokens: int = 4096,
selected_screen: int = 0,
showui_max_pixels: int = 1344,
showui_awq_4bit: bool = False,
ui_tars_url: str = ""
):
"""
Synchronous agentic sampling loop for the assistant/tool interaction of computer use.
"""
# ---------------------------
# Initialize Planner
# ---------------------------
if planner_model == "claude-3-5-sonnet-20241022":
# Register Actor and Executor
actor = AnthropicActor(
model=planner_model,
provider=actor_provider,
system_prompt_suffix=system_prompt_suffix,
api_key=api_key,
api_response_callback=api_response_callback,
max_tokens=max_tokens,
only_n_most_recent_images=only_n_most_recent_images,
selected_screen=selected_screen
)
executor = AnthropicExecutor(
output_callback=output_callback,
tool_output_callback=tool_output_callback,
selected_screen=selected_screen
)
loop_mode = "unified"
elif planner_model in ["gpt-4o", "gpt-4o-mini", "qwen2-vl-max"]:
if torch.cuda.is_available(): device = torch.device("cuda")
elif torch.backends.mps.is_available(): device = torch.device("mps")
else: device = torch.device("cpu") # support: 'cpu', 'mps', 'cuda'
logger.info(f"Model inited on device: {device}.")
planner = APIVLMPlanner(
model=planner_model,
provider=planner_provider,
system_prompt_suffix=system_prompt_suffix,
api_key=api_key,
api_response_callback=api_response_callback,
selected_screen=selected_screen,
output_callback=output_callback,
device=device
)
loop_mode = "planner + actor"
elif planner_model == "qwen2-vl-7b-instruct":
planner = LocalVLMPlanner(
model=planner_model,
provider=planner_provider,
system_prompt_suffix=system_prompt_suffix,
api_key=api_key,
api_response_callback=api_response_callback,
selected_screen=selected_screen,
output_callback=output_callback,
device=device
)
loop_mode = "planner + actor"
elif "ssh" in planner_model:
if torch.cuda.is_available(): device = torch.device("cuda")
elif torch.backends.mps.is_available(): device = torch.device("mps")
else: device = torch.device("cpu") # support: 'cpu', 'mps', 'cuda'
logger.info(f"Model inited on device: {device}.")
planner = APIVLMPlanner(
model=planner_model,
provider=planner_provider,
system_prompt_suffix=system_prompt_suffix,
api_key=api_key,
api_response_callback=api_response_callback,
selected_screen=selected_screen,
output_callback=output_callback,
device=device
)
loop_mode = "planner + actor"
else:
logger.error(f"Planner Model {planner_model} not supported")
raise ValueError(f"Planner Model {planner_model} not supported")
# ---------------------------
# Initialize Actor
# ---------------------------
if actor_model == "ShowUI":
if showui_awq_4bit:
showui_model_path = "./showui-2b-awq-4bit/"
else:
showui_model_path = "./showui-2b/"
actor = ShowUIActor(
model_path=showui_model_path,
device=device,
split='desktop', # 'desktop' or 'phone'
selected_screen=selected_screen,
output_callback=output_callback,
max_pixels=showui_max_pixels,
awq_4bit=showui_awq_4bit
)
executor = ShowUIExecutor(
output_callback=output_callback,
tool_output_callback=tool_output_callback,
selected_screen=selected_screen
)
elif actor_model == "UI-TARS":
actor = UITARS_Actor(
ui_tars_url=ui_tars_url,
output_callback=output_callback,
selected_screen=selected_screen
)
else:
raise ValueError(f"Actor Model {actor_model} not supported")
tool_result_content = None
showui_loop_count = 0
logger.info(f"Start the message loop. User messages: {messages}")
if loop_mode == "unified":
# ------------------------------
# Unified loop: repeatedly call actor -> executor -> check tool_result -> maybe end
# ------------------------------
while True:
# Call the actor with current messages
response = actor(messages=messages)
# Let the executor process that response, yielding any intermediate messages
for message, tool_result_content in executor(response, messages):
yield message
# If executor didn't produce further content, we're done
if not tool_result_content:
return messages
# If there is more tool content, treat that as user input
messages.append({
"content": tool_result_content,
"role": "user"
})
elif loop_mode == "planner + actor":
# ------------------------------------------------------
# Planner + actor loop:
# 1) planner => get next_action
# 2) If no next_action -> end
# 3) Otherwise actor => executor
# 4) repeat
# ------------------------------------------------------
while True:
# Step 1: Planner (VLM) response
vlm_response = planner(messages=messages)
# Step 2: Extract the "Next Action" from the planner output
next_action = json.loads(vlm_response).get("Next Action")
# Yield the next_action string, in case the UI or logs want to show it
yield next_action
# Step 3: Check if there are no further actions
if not next_action or next_action in ("None", ""):
final_sc, final_sc_path = get_screenshot(selected_screen=selected_screen)
final_image_b64 = encode_image(str(final_sc_path))
output_callback(
(
f"No more actions from {colorful_text_vlm}. End of task. Final State:\n"
f'<img src="data:image/png;base64,{final_image_b64}">'
),
sender="bot"
)
yield None
break
# Step 4: Output an action message
output_callback(
f"{colorful_text_vlm} sending action to {colorful_text_showui}:\n{next_action}",
sender="bot"
)
# Step 5: Actor response
actor_response = actor(messages=next_action)
yield actor_response
# Step 6: Execute the actor response
for message, tool_result_content in executor(actor_response, messages):
time.sleep(0.5) # optional small delay
yield message
# Step 7: Update conversation with embedding history of plan and actions
messages.append({
"role": "user",
"content": [
"History plan:" + str(json.loads(vlm_response)),
"History actions:" + str(actor_response["content"])
]
})
logger.info(
f"End of loop {showui_loop_count + 1}. "
f"Messages: {str(messages)[:100000]}. "
f"Total cost: $USD{planner.total_cost:.5f}"
)
# Increment loop counter
showui_loop_count += 1
|