File size: 2,487 Bytes
6d901c3
 
 
 
 
 
753399a
6d901c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753399a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
from flask import Flask, request, jsonify, render_template
from transformers import pipeline
import mysql.connector
from groq import Groq

app = Flask(__name__)

# Initialize the text generation pipeline
pipe = pipeline("text-generation", model="defog/sqlcoder-7b-2")

# Initialize the Groq client
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# Database connection details
DB_CONFIG = {
    'host': 'auth-db579.hstgr.io',
    'user': 'u121769371_ki_aiml_test',
    'password': os.environ.get("DB_PASSWORD"),
    'database': 'u121769371_ki_aiml_test'
}

def generate_sql(text):
    output = pipe(text, max_new_tokens=50)
    return output[0]['generated_text']

def execute_query(query):
    try:
        connection = mysql.connector.connect(**DB_CONFIG)
        cursor = connection.cursor()
        cursor.execute(query)
        results = cursor.fetchall()
        cursor.close()
        connection.close()
        return results
    except mysql.connector.Error as err:
        print(f"Error: {err}")
        return None

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/chatbot', methods=['POST'])
def chatbot():
    data = request.json
    user_query = data.get('text')

    if not user_query:
        return jsonify({"error": "No query provided"}), 400

    try:
        # Step 1: Convert natural language to SQL
        sql_query = generate_sql(user_query)

        # Step 2: Execute SQL query
        query_result = execute_query(sql_query)

        if query_result is None:
            return jsonify({"error": "Database query execution failed"}), 500

        # Step 3: Generate natural language response using Groq
        prompt = f"Original query: {user_query}\nSQL query: {sql_query}\nQuery result: {query_result}\nPlease provide a natural language summary of the query result."
        
        chat_completion = groq_client.chat.completions.create(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            model="llama3-8b-8192",
        )

        natural_language_response = chat_completion.choices[0].message.content

        return jsonify({"response": natural_language_response})

    except Exception as e:
        return jsonify({"error": str(e)}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8000)