Spaces:
Runtime error
Runtime error
File size: 1,402 Bytes
93a3ab4 5c19521 93a3ab4 1c8abeb 93a3ab4 5c19521 93a3ab4 5c19521 93a3ab4 5c19521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import os
from fastapi import FastAPI
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
from huggingface_hub import login
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Get the Hugging Face token from the environment variable
huggingface_token = os.getenv("HUGGING_FACE_TOKEN")
if huggingface_token is None:
raise ValueError("HUGGING_FACE_TOKEN environment variable is not set")
# Login to Hugging Face Hub
login(token=huggingface_token)
# Initialize FastAPI app
app = FastAPI()
# Load PEFT model configuration and base model
config = PeftConfig.from_pretrained("frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", use_auth_token=True)
model = PeftModel.from_pretrained(base_model, "frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", use_auth_token=True)
# Create the pipeline
pipe = pipeline("text2sql", model=model, tokenizer=tokenizer)
@app.get("/")
def home():
return {"message": "Hello World"}
@app.get("/generate")
def generate(text: str):
output = pipe(text)
return {"output": output[0]['generated_text']}
|