Spaces:
Runtime error
Runtime error
import logging | |
import os | |
from fastapi import FastAPI, HTTPException | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from peft import PeftModel, PeftConfig | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Global variables for model, tokenizer, and pipeline | |
model = None | |
tokenizer = None | |
pipe = None | |
# Get the Hugging Face token from environment variable | |
hf_token = os.environ.get("HUGGINGFACE_TOKEN") | |
if not hf_token: | |
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
async def load_model(): | |
global model, tokenizer, pipe | |
try: | |
logger.info("Loading PEFT configuration...") | |
config = PeftConfig.from_pretrained("frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval", token=hf_token) | |
logger.info("Loading base model...") | |
base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", token=hf_token) | |
logger.info("Loading PEFT model...") | |
model = PeftModel.from_pretrained(base_model, "frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval", token=hf_token) | |
logger.info("Loading tokenizer...") | |
tokenizer = MistralTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", token=hf_token) | |
logger.info("Creating pipeline...") | |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer) | |
logger.info("Model, tokenizer, and pipeline loaded successfully.") | |
except ImportError as e: | |
logger.error(f"Error importing required modules. Please check your installation: {e}") | |
raise | |
except Exception as e: | |
logger.error(f"Error loading model or creating pipeline: {e}") | |
raise | |
def home(): | |
return {"message": "Hello World"} | |
async def generate(text: str): | |
if not pipe: | |
raise HTTPException(status_code=503, detail="Model not loaded") | |
try: | |
output = pipe(text, max_length=100, num_return_sequences=1) | |
return {"output": output[0]['generated_text']} | |
except Exception as e: | |
logger.error(f"Error during text generation: {e}") | |
raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |