ASR_Faroese / app.py
barbaroo's picture
Update app.py
502159a
raw
history blame
1.51 kB
import gradio as gr
import time
import torch
from transformers import pipeline
import numpy as np
# Check if GPU is available
use_gpu = torch.cuda.is_available()
# Configure the pipeline to use the GPU if available
if use_gpu:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
chunk_size = 30 # Adjust the chunk size as needed
def transcribe(audio, state="", uploaded_audio=None):
if uploaded_audio is not None:
audio = uploaded_audio
if not audio:
return state, state # Return a meaningful message
try:
state += "Transcribing...\n"
chunks = [audio[i:i + chunk_size] for i in range(0, len(audio), chunk_size)]
for chunk in chunks:
text = p(chunk)["text"]
state += text + "\n"
time.sleep(1) # Simulate processing time for each chunk
return state, state
except Exception as e:
return "An error occurred during transcription.", state # Handle other exceptions
gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="numpy"),
'state',
gr.inputs.Audio(label="Upload Audio File", type="numpy", source="upload")
],
outputs=[
"textbox",
"state"
],
live=True
).launch()