import gradio as gr import time from transformers import pipeline import torch # Check if GPU is available use_gpu = torch.cuda.is_available() # Configure the pipeline to use the GPU if available if use_gpu: p = pipeline("automatic-speech-recognition", model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0) else: p = pipeline("automatic-speech-recognition", model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h") def transcribe(audio, state="", uploaded_audio=None): if uploaded_audio is not None: audio = uploaded_audio if not audio: return state, state # Return a meaningful message try: time.sleep(3) text = p(audio, chunk_length_s= 50)["text"] state += text + "\n" return state, state except Exception as e: return "An error occurred during transcription.", state # Handle other exceptions def reset(state): state = '' return state demo = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath"), 'state', gr.inputs.Audio(label="Upload Audio File", type="filepath", source="upload") ], outputs=[ "textbox", "state", gr.Button('Reset').click(reset, inputs=[state], outputs=[state]) ], live=True) demo.launch()