Update main.py
Browse files
main.py
CHANGED
@@ -78,34 +78,19 @@ def generate_recommendations_for_session(session_id):
|
|
78 |
# Convert session data to a DataFrame
|
79 |
raw_df = pd.DataFrame(session_data)
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
total_duration=('duration', 'sum')
|
87 |
-
).reset_index()
|
88 |
-
else:
|
89 |
-
# Aggregate data by id and action, without duration
|
90 |
-
aggregated_data = raw_df.groupby(['id', 'action']).agg(
|
91 |
-
presence=('action', 'size')
|
92 |
-
).reset_index()
|
93 |
|
94 |
# Create a pivot table from the aggregated data
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
)
|
102 |
-
else:
|
103 |
-
pivot_df = aggregated_data.pivot_table(
|
104 |
-
index=['id'],
|
105 |
-
columns='action',
|
106 |
-
values=['presence'],
|
107 |
-
fill_value=0
|
108 |
-
)
|
109 |
|
110 |
# Flatten column names
|
111 |
pivot_df.columns = ['_'.join(col).strip() for col in pivot_df.columns.values]
|
@@ -114,7 +99,7 @@ def generate_recommendations_for_session(session_id):
|
|
114 |
for col in ALL_COLUMNS:
|
115 |
if f'presence_{col}' not in pivot_df.columns and col != 'time_spent':
|
116 |
pivot_df[f'presence_{col}'] = 0
|
117 |
-
elif col == 'time_spent' and '
|
118 |
pivot_df['total_duration_time_spent'] = 0
|
119 |
|
120 |
# Calculate interaction score for each row
|
@@ -144,6 +129,7 @@ def generate_recommendations_for_session(session_id):
|
|
144 |
logger.error(f"Error in generate_recommendations_for_session: {e}")
|
145 |
return None
|
146 |
|
|
|
147 |
def calculate_interaction_score(row):
|
148 |
try:
|
149 |
# Calculate the score based on the presence of different actions
|
|
|
78 |
# Convert session data to a DataFrame
|
79 |
raw_df = pd.DataFrame(session_data)
|
80 |
|
81 |
+
# Aggregate data by id and action
|
82 |
+
aggregated_data = raw_df.groupby(['id', 'action']).agg(
|
83 |
+
presence=('action', 'size'),
|
84 |
+
total_duration=('duration', 'sum')
|
85 |
+
).reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Create a pivot table from the aggregated data
|
88 |
+
pivot_df = aggregated_data.pivot_table(
|
89 |
+
index=['id'],
|
90 |
+
columns='action',
|
91 |
+
values=['presence', 'total_duration'],
|
92 |
+
fill_value=0
|
93 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Flatten column names
|
96 |
pivot_df.columns = ['_'.join(col).strip() for col in pivot_df.columns.values]
|
|
|
99 |
for col in ALL_COLUMNS:
|
100 |
if f'presence_{col}' not in pivot_df.columns and col != 'time_spent':
|
101 |
pivot_df[f'presence_{col}'] = 0
|
102 |
+
elif col == 'time_spent' and 'total_duration_time_spent' not in pivot_df.columns:
|
103 |
pivot_df['total_duration_time_spent'] = 0
|
104 |
|
105 |
# Calculate interaction score for each row
|
|
|
129 |
logger.error(f"Error in generate_recommendations_for_session: {e}")
|
130 |
return None
|
131 |
|
132 |
+
|
133 |
def calculate_interaction_score(row):
|
134 |
try:
|
135 |
# Calculate the score based on the presence of different actions
|