Upload 6 files
Browse files- Dockerfile +38 -0
- all_columns.joblib +3 -0
- app.py +6 -0
- main.py +188 -0
- requirements.txt +7 -0
- svd_model.joblib +3 -0
Dockerfile
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
# Set environment variables
|
4 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
5 |
+
ENV TZ=UTC
|
6 |
+
|
7 |
+
# Install system dependencies
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
build-essential \
|
10 |
+
libsqlite3-dev \
|
11 |
+
&& rm -rf /var/lib/apt/lists/*
|
12 |
+
|
13 |
+
# Set working directory
|
14 |
+
WORKDIR /app
|
15 |
+
|
16 |
+
# Install Python dependencies
|
17 |
+
RUN pip install --no-cache-dir --upgrade pip setuptools && \
|
18 |
+
pip install --no-cache-dir \
|
19 |
+
fastapi==0.113.0 \
|
20 |
+
pymongo==4.9.1 \
|
21 |
+
pandas==2.2.3 \
|
22 |
+
numpy==1.26.4 \
|
23 |
+
scikit-learn==1.5.2 \
|
24 |
+
joblib==1.4.2 \
|
25 |
+
uvicorn==0.30.6
|
26 |
+
|
27 |
+
# Copy your application files
|
28 |
+
COPY . .
|
29 |
+
|
30 |
+
# Create logs directory
|
31 |
+
RUN mkdir -p /app/logs
|
32 |
+
|
33 |
+
# Expose the port
|
34 |
+
EXPOSE 7860
|
35 |
+
|
36 |
+
# Command to run your application
|
37 |
+
CMD ["python", "app.py"]
|
38 |
+
|
all_columns.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ca0b7152fe6f2a584024284b878545275848e7811f732ac20b29f13de44202
|
3 |
+
size 31936
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
from main import app
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
6 |
+
|
main.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, BackgroundTasks
|
2 |
+
from contextlib import asynccontextmanager
|
3 |
+
from pymongo import MongoClient
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
import joblib
|
8 |
+
import asyncio
|
9 |
+
import logging
|
10 |
+
from logging.handlers import RotatingFileHandler
|
11 |
+
import os
|
12 |
+
from datetime import datetime
|
13 |
+
|
14 |
+
# Set up logging
|
15 |
+
log_directory = "logs"
|
16 |
+
if not os.path.exists(log_directory):
|
17 |
+
os.makedirs(log_directory)
|
18 |
+
|
19 |
+
log_file = os.path.join(log_directory, f"app_{datetime.now().strftime('%Y%m%d')}.log")
|
20 |
+
|
21 |
+
# Configure logging to write to both file and console
|
22 |
+
logging.basicConfig(level=logging.INFO,
|
23 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
24 |
+
handlers=[
|
25 |
+
RotatingFileHandler(log_file, maxBytes=10000000, backupCount=5),
|
26 |
+
logging.StreamHandler()
|
27 |
+
])
|
28 |
+
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
# MongoDB connection setup
|
32 |
+
db_name = 'property-listing'
|
33 |
+
collection_name = 'synthetic_user_behavior_owais'
|
34 |
+
connection_string = os.getenv('CONNECTION_STRING')
|
35 |
+
|
36 |
+
client = MongoClient(connection_string)
|
37 |
+
db = client[db_name]
|
38 |
+
collection = db[collection_name]
|
39 |
+
|
40 |
+
# Load pre-trained SVD model and user-item matrix columns
|
41 |
+
svd = joblib.load('svd_model.joblib')
|
42 |
+
user_item_matrix_columns = joblib.load('all_columns.joblib')
|
43 |
+
item_factors = svd.components_.T
|
44 |
+
|
45 |
+
# Define the actions we're interested in
|
46 |
+
ALL_COLUMNS = ['nxt_img_listing', 'read_more_listing', 'nxt_img_detail', 'read_more_detail', 'time_spent']
|
47 |
+
|
48 |
+
# Global variables to store the latest session and recommendations
|
49 |
+
latest_session_id = None
|
50 |
+
latest_recommendations = None
|
51 |
+
|
52 |
+
async def check_for_new_session():
|
53 |
+
global latest_session_id, latest_recommendations
|
54 |
+
last_document_count = 0
|
55 |
+
while True:
|
56 |
+
try:
|
57 |
+
# Find the most recent document in the collection
|
58 |
+
latest_doc = collection.find_one(sort=[('timestamp', -1)])
|
59 |
+
current_document_count = collection.count_documents({})
|
60 |
+
|
61 |
+
if latest_doc:
|
62 |
+
if latest_doc['sessionId'] != latest_session_id or current_document_count > last_document_count:
|
63 |
+
latest_session_id = latest_doc['sessionId']
|
64 |
+
logger.info(f"New activity detected for session: {latest_session_id}")
|
65 |
+
latest_recommendations = generate_recommendations_for_session(latest_session_id)
|
66 |
+
if latest_recommendations:
|
67 |
+
logger.info(f"Generated recommendations for session {latest_session_id}: {latest_recommendations}")
|
68 |
+
else:
|
69 |
+
logger.warning(f"No recommendations generated for session {latest_session_id}")
|
70 |
+
last_document_count = current_document_count
|
71 |
+
else:
|
72 |
+
logger.info("No new activity detected")
|
73 |
+
else:
|
74 |
+
logger.warning("No documents found in the collection")
|
75 |
+
|
76 |
+
await asyncio.sleep(5) # Check every 5 seconds
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"Error in check_for_new_session: {e}")
|
79 |
+
await asyncio.sleep(5) # Wait before retrying
|
80 |
+
|
81 |
+
def generate_recommendations_for_session(session_id):
|
82 |
+
try:
|
83 |
+
# Retrieve all documents for the given session
|
84 |
+
session_data = list(collection.find({'sessionId': session_id}))
|
85 |
+
if not session_data:
|
86 |
+
logger.warning(f"No data found for session {session_id}")
|
87 |
+
return None
|
88 |
+
|
89 |
+
# Convert session data to a DataFrame
|
90 |
+
raw_df = pd.DataFrame(session_data)
|
91 |
+
|
92 |
+
# Aggregate data by id and action
|
93 |
+
aggregated_data = raw_df.groupby(['id', 'action']).agg(
|
94 |
+
presence=('action', 'size'),
|
95 |
+
total_duration=('duration', 'sum')
|
96 |
+
).reset_index()
|
97 |
+
|
98 |
+
# Create a pivot table from the aggregated data
|
99 |
+
pivot_df = aggregated_data.pivot_table(
|
100 |
+
index=['id'],
|
101 |
+
columns='action',
|
102 |
+
values=['presence', 'total_duration'],
|
103 |
+
fill_value=0
|
104 |
+
)
|
105 |
+
|
106 |
+
# Flatten column names
|
107 |
+
pivot_df.columns = ['_'.join(col).strip() for col in pivot_df.columns.values]
|
108 |
+
|
109 |
+
# Ensure all expected columns exist in the pivot table
|
110 |
+
for col in ALL_COLUMNS:
|
111 |
+
if f'presence_{col}' not in pivot_df.columns and col != 'time_spent':
|
112 |
+
pivot_df[f'presence_{col}'] = 0
|
113 |
+
elif col == 'time_spent' and 'total_duration_time_spent' not in pivot_df.columns:
|
114 |
+
pivot_df['total_duration_time_spent'] = 0
|
115 |
+
|
116 |
+
# Calculate interaction score for each row
|
117 |
+
pivot_df['interaction_score'] = pivot_df.apply(calculate_interaction_score, axis=1)
|
118 |
+
|
119 |
+
# Create a user vector based on the interaction scores
|
120 |
+
user_vector = pd.Series(index=user_item_matrix_columns, dtype=float).fillna(0)
|
121 |
+
for property_id, score in pivot_df['interaction_score'].items():
|
122 |
+
if property_id in user_vector.index:
|
123 |
+
user_vector[property_id] = score
|
124 |
+
|
125 |
+
# Transform the user vector using the SVD model
|
126 |
+
user_vector_array = user_vector.values.reshape(1, -1)
|
127 |
+
user_latent = svd.transform(user_vector_array)
|
128 |
+
|
129 |
+
# Calculate similarity scores between the user vector and item factors
|
130 |
+
similarity_scores = cosine_similarity(user_latent, item_factors)
|
131 |
+
|
132 |
+
# Get the indices of the top 10 most similar items
|
133 |
+
top_indices = similarity_scores.argsort()[0][-10:][::-1]
|
134 |
+
|
135 |
+
# Get the corresponding property IDs for the top indices
|
136 |
+
recommendations = user_item_matrix_columns[top_indices].tolist()
|
137 |
+
|
138 |
+
return recommendations
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error in generate_recommendations_for_session: {e}")
|
141 |
+
return None
|
142 |
+
|
143 |
+
def calculate_interaction_score(row):
|
144 |
+
try:
|
145 |
+
# Calculate the score based on the presence of different actions
|
146 |
+
score = (
|
147 |
+
row.get('presence_nxt_img_listing', 0) * 1 +
|
148 |
+
row.get('presence_read_more_listing', 0) * 2 +
|
149 |
+
row.get('presence_nxt_img_detail', 0) * 3 +
|
150 |
+
row.get('presence_read_more_detail', 0) * 4 +
|
151 |
+
row.get('total_duration_time_spent', 0) / 10
|
152 |
+
)
|
153 |
+
|
154 |
+
# Apply bounce penalty if the session duration is less than 15 seconds
|
155 |
+
if 'total_duration_time_spent' in row and row['total_duration_time_spent'] < 15:
|
156 |
+
score -= 10
|
157 |
+
|
158 |
+
return score
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Error in calculate_interaction_score: {e}")
|
161 |
+
return 0
|
162 |
+
|
163 |
+
@asynccontextmanager
|
164 |
+
async def lifespan(app: FastAPI):
|
165 |
+
# Startup: create background task
|
166 |
+
task = asyncio.create_task(check_for_new_session())
|
167 |
+
yield
|
168 |
+
# Shutdown: cancel background task
|
169 |
+
task.cancel()
|
170 |
+
try:
|
171 |
+
await task
|
172 |
+
except asyncio.CancelledError:
|
173 |
+
logger.info("Background task cancelled")
|
174 |
+
|
175 |
+
# Create FastAPI application instance
|
176 |
+
app = FastAPI(lifespan=lifespan)
|
177 |
+
|
178 |
+
@app.get("/")
|
179 |
+
async def root():
|
180 |
+
return {"message": "Welcome to the Rec API"}
|
181 |
+
|
182 |
+
@app.get("/recommendations")
|
183 |
+
async def get_recommendations():
|
184 |
+
if latest_recommendations:
|
185 |
+
logger.info(f"Generated recommendations: {{'recommendations': {latest_recommendations}, 'session_id': '{latest_session_id}'}}")
|
186 |
+
return {"recommendations": latest_recommendations, "session_id": latest_session_id}
|
187 |
+
else:
|
188 |
+
return {"message": "No recommendations available yet", "session_id": latest_session_id}
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.113.0
|
2 |
+
pymongo==4.9.1
|
3 |
+
pandas==2.2.3
|
4 |
+
numpy==1.26.4
|
5 |
+
sklearn==1.5.2
|
6 |
+
joblib==1.4.2
|
7 |
+
uvicorn==0.30.6
|
svd_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d806bc456b2d81eb497dc520666790484843d525e55cbfb3add02084bf0d97cf
|
3 |
+
size 143063
|