Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- ammons_muse.txt +0 -0
- app.py +81 -0
ammons_muse.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
from transformers import pipeline
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
|
8 |
+
# File paths
|
9 |
+
INDEX_FILE = 'ammons_muse_index.faiss'
|
10 |
+
EMBEDDINGS_FILE = 'ammons_muse_embeddings.npy'
|
11 |
+
CHUNKS_FILE = 'ammons_muse_chunks.npy'
|
12 |
+
TEXT_FILE = 'ammons_muse.txt'
|
13 |
+
|
14 |
+
# Load and prepare the text
|
15 |
+
def prepare_text():
|
16 |
+
with open(TEXT_FILE, 'r', encoding='utf-8') as file:
|
17 |
+
text = file.read()
|
18 |
+
chunk_size = 1000
|
19 |
+
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
20 |
+
|
21 |
+
# Create or load embeddings and index
|
22 |
+
def get_embeddings_and_index(chunks):
|
23 |
+
if os.path.exists(INDEX_FILE) and os.path.exists(EMBEDDINGS_FILE):
|
24 |
+
print("Loading existing index and embeddings...")
|
25 |
+
index = faiss.read_index(INDEX_FILE)
|
26 |
+
embeddings = np.load(EMBEDDINGS_FILE)
|
27 |
+
else:
|
28 |
+
print("Creating new index and embeddings...")
|
29 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
30 |
+
embeddings = model.encode(chunks)
|
31 |
+
dimension = embeddings.shape[1]
|
32 |
+
index = faiss.IndexFlatL2(dimension)
|
33 |
+
index.add(embeddings.astype('float32'))
|
34 |
+
|
35 |
+
# Save index and embeddings
|
36 |
+
faiss.write_index(index, INDEX_FILE)
|
37 |
+
np.save(EMBEDDINGS_FILE, embeddings)
|
38 |
+
|
39 |
+
return embeddings, index
|
40 |
+
|
41 |
+
# Load or create chunks
|
42 |
+
if os.path.exists(CHUNKS_FILE):
|
43 |
+
chunks = np.load(CHUNKS_FILE, allow_pickle=True).tolist()
|
44 |
+
else:
|
45 |
+
chunks = prepare_text()
|
46 |
+
np.save(CHUNKS_FILE, np.array(chunks, dtype=object))
|
47 |
+
|
48 |
+
# Get embeddings and index
|
49 |
+
embeddings, index = get_embeddings_and_index(chunks)
|
50 |
+
|
51 |
+
# Set up text generation pipeline
|
52 |
+
generator = pipeline('text-generation', model='gpt2')
|
53 |
+
|
54 |
+
# Retrieval function
|
55 |
+
def retrieve_relevant_chunks(query, top_k=3):
|
56 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
57 |
+
query_vector = model.encode([query])
|
58 |
+
_, indices = index.search(query_vector.astype('float32'), top_k)
|
59 |
+
return [chunks[i] for i in indices[0]]
|
60 |
+
|
61 |
+
# Character response generation
|
62 |
+
def generate_character_response(query):
|
63 |
+
relevant_chunks = retrieve_relevant_chunks(query)
|
64 |
+
prompt = f"""As the Muse from A.R. Ammons' poetry, respond to this query:
|
65 |
+
Context: {' '.join(relevant_chunks)}
|
66 |
+
User: {query}
|
67 |
+
Muse:"""
|
68 |
+
|
69 |
+
response = generator(prompt, max_length=150, num_return_sequences=1)[0]['generated_text']
|
70 |
+
return response.split('Muse:')[-1].strip()
|
71 |
+
|
72 |
+
# Gradio interface
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=generate_character_response,
|
75 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
76 |
+
outputs="text",
|
77 |
+
title="A.R. Ammons' Muse Chatbot",
|
78 |
+
description="Ask a question and get a response from the Muse of A.R. Ammons' poetry."
|
79 |
+
)
|
80 |
+
|
81 |
+
iface.launch()
|