Spaces:
Sleeping
Sleeping
File size: 4,623 Bytes
0b07a42 362448c 0b07a42 362448c 0b07a42 362448c 0b07a42 362448c 0b07a42 1a7567e 0b07a42 1a7567e 0b07a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
from dataclasses import dataclass
import pandas as pd
@dataclass
class Model(object):
model_display_name: str
model_name: str
api_url: str
provider: str
hourly_cost: int = None
cost: str = None
supports_functions: str = False
size_billion_parameters: int = None # in billion paramters
cost_per_million_tokens: int = None
cost_per_million_input_tokens: int = None
cost_per_million_output_tokens: int = None
def __post_init__(self):
self.cost_per_million_input_tokens = self.cost_per_million_input_tokens or self.cost_per_million_tokens
self.cost_per_million_output_tokens = self.cost_per_million_output_tokens or self.cost_per_million_tokens
if not self.cost and self.hourly_cost:
self.cost = f"${self.hourly_cost} / hour"
if not self.cost and self.cost_per_million_tokens:
self.cost = f"${self.cost_per_million_tokens} / 1M tokens"
elif not self.cost and self.cost_per_million_input_tokens and self.cost_per_million_output_tokens:
self.cost = f"${self.cost_per_million_input_tokens} / 1M input tokens, ${self.cost_per_million_output_tokens} / 1M output tokens"
env = os.environ.get
MODELS = [
# source: https://openai.com/pricing
# converted costs from dollar/1K tokens to dollar/1M for readability and together_ai comparability
Model(
"gpt-3.5-turbo",
"gpt-3.5-turbo",
None,
"OpenAI",
supports_functions=True,
cost_per_million_input_tokens=1,
cost_per_million_output_tokens=2,
),
Model(
"gpt-4-turbo",
"gpt-4-1106-preview",
None,
"OpenAI",
supports_functions=True,
cost_per_million_input_tokens=10,
cost_per_million_output_tokens=30,
),
Model(
"gpt-4",
"gpt-4",
None,
"OpenAI",
supports_functions=True,
cost_per_million_input_tokens=30,
cost_per_million_output_tokens=60,
),
# we don't test gpt-4-32k because the tasks don't reach gpt-4 limitations
Model(
"gpt-3.5-turbo",
"gpt-3.5-turbo",
None,
"OpenAI",
supports_functions=True,
cost_per_million_input_tokens=1,
cost_per_million_output_tokens=2,
),
# source: https://www.together.ai/pricing
Model(
"llama-2-70b-chat",
"together_ai/togethercomputer/llama-2-70b-chat",
None,
"Together AI",
cost_per_million_tokens=0.2,
),
Model(
"Mixtral-8x7B-Instruct-v0.1",
"together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1",
None,
"Together AI",
size_billion_parameters=8 * 7,
cost_per_million_tokens=0.9,
),
# taken from endpoint pages
Model(
"zephyr-7b-beta",
"huggingface/HuggingFaceH4/zephyr-7b-beta",
env("ZEPHYR_7B_BETA_URL"),
"Hugging Face Inference Endpoint",
hourly_cost=1.30,
size_billion_parameters=7,
),
Model(
"Mistral-7B-Instruct-v0.2",
"huggingface/mistralai/Mistral-7B-Instruct-v0.2",
env("MISTRAL_7B_BETA_URL"),
"Hugging Face Inference Endpoint",
hourly_cost=1.30,
size_billion_parameters=7,
),
Model(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"huggingface/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
env("TINY_LLAMA_URL"),
"Hugging Face Inference Endpoint",
hourly_cost=0.60,
size_billion_parameters=1.1,
),
Model(
"gemini-pro",
"gemini-pro",
None,
"Google VertexAI",
# https://ai.google.dev/pricing
cost="$0.25 / 1M input characters, $0.5 / 1K output characters (60 queries per minute are free)",
cost_per_million_input_tokens=0.25,
cost_per_million_output_tokens=0.5,
),
Model(
"chat-bison (PaLM 2)",
"chat-bison",
None,
"Google VertexAI",
# https://cloud.google.com/vertex-ai/docs/generative-ai/pricing
cost_per_million_input_tokens=0.25,
cost_per_million_output_tokens=0.5,
),
Model(
"chat-bison-32k (PaLM 2 32K)",
"chat-bison-32k",
None,
"Google VertexAI",
# https://cloud.google.com/vertex-ai/docs/generative-ai/pricing
cost_per_million_input_tokens=0.25,
cost_per_million_output_tokens=0.5,
),
]
def models_costs():
return pd.DataFrame(
[(model.model_display_name, model.provider, model.cost) for model in MODELS],
columns=["Model", "Provider", "Cost"],
)
|