Spaces:
Running
Running
piotr-szleg-bards-ai
commited on
Commit
·
adcaa2b
1
Parent(s):
e6c9478
2024-02-08 14:48:57 Publish script update
Browse files- app.py +38 -20
- data/2024-02-08 14:18:16.852773_time_of_day_comparison.csv +87 -0
- data/2024-02-08 14:18:58.194844_time_of_day_comparison.csv +87 -0
- data/2024-02-08 14:20:56.432044_time_of_day_comparison.csv +87 -0
- data/2024-02-08 14:22:42.700060_time_of_day_comparison.csv +89 -0
- data/time_of_day_plots.csv +0 -0
- pipeline/models.py +2 -2
app.py
CHANGED
@@ -32,17 +32,27 @@ We used litellm python library for all of the models which naturally adds some
|
|
32 |
We also attempted to use HF Endpoints as much as possible due to their popularity and transparency of how the model is executed.
|
33 |
"""
|
34 |
|
35 |
-
time_periods_explanation_df = pd.DataFrame(
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
queries_config = QueriesConfig()
|
41 |
|
42 |
-
output_types_df = pd.DataFrame(
|
43 |
-
"Output Type": queries_config.query_template.keys(),
|
44 |
-
|
45 |
-
})
|
46 |
|
47 |
summary_df: pd.DataFrame = pd.read_csv("data/2024-02-05 23:33:22.947120_summary.csv")
|
48 |
time_of_day_comparison_df = pd.read_csv("data/2024-02-06 09:49:19.637072_time_of_day_comparison.csv")
|
@@ -140,12 +150,13 @@ with gr.Blocks() as demo:
|
|
140 |
with gr.Row():
|
141 |
filter_textbox.render()
|
142 |
filter_button.render()
|
143 |
-
|
144 |
with gr.Tab("About this project"):
|
145 |
-
gr.Markdown(
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
with gr.Tab("General plots"):
|
150 |
for index, row in general_plots.iterrows():
|
151 |
plot = plotly.io.from_json(row["plot_json"])
|
@@ -158,14 +169,16 @@ with gr.Blocks() as demo:
|
|
158 |
collapse_languages_button.render()
|
159 |
collapse_output_method_button.render()
|
160 |
summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
|
161 |
-
gr.Markdown(
|
|
|
162 |
This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.
|
163 |
|
164 |
Execution time refers to averaged time needed to execute one query.
|
165 |
|
166 |
To count words we split the output string by whitespace `\w` regex character.
|
167 |
|
168 |
-
Chunk sizes are measured in the characters count."""
|
|
|
169 |
for index, row in output_plots.iterrows():
|
170 |
plot = plotly.io.from_json(row["plot_json"])
|
171 |
plot.update_layout(autosize=True)
|
@@ -177,9 +190,12 @@ Chunk sizes are measured in the characters count.""")
|
|
177 |
plot = plotly.io.from_json(row["plot_json"])
|
178 |
plot.update_layout(autosize=True)
|
179 |
gr.Plot(plot, label=row["header"], scale=1)
|
180 |
-
time_periods_explanation_ui = gr.DataFrame(
|
|
|
|
|
181 |
time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
|
182 |
-
gr.Markdown(
|
|
|
183 |
These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
|
184 |
|
185 |
Execution time refers to averaged time needed to execute one query.
|
@@ -187,8 +203,9 @@ Execution time refers to averaged time needed to execute one query.
|
|
187 |
Hours and times of day in the table and in the plot are based on Central European Time.
|
188 |
|
189 |
Measurements were made during a normal work week.
|
190 |
-
"""
|
191 |
-
|
|
|
192 |
for index, row in time_of_day_plots[1:].iterrows():
|
193 |
plot = plotly.io.from_json(row["plot_json"])
|
194 |
plot.update_layout(autosize=True)
|
@@ -204,7 +221,8 @@ Hugging Face Inference Endpoints are charged by hour so to compare different pro
|
|
204 |
for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.
|
205 |
|
206 |
Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
|
207 |
-
"""
|
|
|
208 |
filter_button.click(
|
209 |
fn=filter_dataframes,
|
210 |
inputs=filter_textbox,
|
|
|
32 |
We also attempted to use HF Endpoints as much as possible due to their popularity and transparency of how the model is executed.
|
33 |
"""
|
34 |
|
35 |
+
time_periods_explanation_df = pd.DataFrame(
|
36 |
+
{
|
37 |
+
"time_of_day": [
|
38 |
+
"early morning",
|
39 |
+
"morning",
|
40 |
+
"afternoon",
|
41 |
+
"late afternoon",
|
42 |
+
"evening",
|
43 |
+
"late evening",
|
44 |
+
"midnight",
|
45 |
+
"night",
|
46 |
+
],
|
47 |
+
"hour_range": ["6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "0-2", "3-5"],
|
48 |
+
}
|
49 |
+
)
|
50 |
|
51 |
queries_config = QueriesConfig()
|
52 |
|
53 |
+
output_types_df = pd.DataFrame(
|
54 |
+
{"Output Type": queries_config.query_template.keys(), "Added text": queries_config.query_template.values()}
|
55 |
+
)
|
|
|
56 |
|
57 |
summary_df: pd.DataFrame = pd.read_csv("data/2024-02-05 23:33:22.947120_summary.csv")
|
58 |
time_of_day_comparison_df = pd.read_csv("data/2024-02-06 09:49:19.637072_time_of_day_comparison.csv")
|
|
|
150 |
with gr.Row():
|
151 |
filter_textbox.render()
|
152 |
filter_button.render()
|
153 |
+
|
154 |
with gr.Tab("About this project"):
|
155 |
+
gr.Markdown(
|
156 |
+
README.format(
|
157 |
+
queries_config.base_query_template.replace("```", "'''"), output_types_df.to_markdown(index=False)
|
158 |
+
)
|
159 |
+
)
|
160 |
with gr.Tab("General plots"):
|
161 |
for index, row in general_plots.iterrows():
|
162 |
plot = plotly.io.from_json(row["plot_json"])
|
|
|
169 |
collapse_languages_button.render()
|
170 |
collapse_output_method_button.render()
|
171 |
summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
|
172 |
+
gr.Markdown(
|
173 |
+
"""\
|
174 |
This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.
|
175 |
|
176 |
Execution time refers to averaged time needed to execute one query.
|
177 |
|
178 |
To count words we split the output string by whitespace `\w` regex character.
|
179 |
|
180 |
+
Chunk sizes are measured in the characters count."""
|
181 |
+
)
|
182 |
for index, row in output_plots.iterrows():
|
183 |
plot = plotly.io.from_json(row["plot_json"])
|
184 |
plot.update_layout(autosize=True)
|
|
|
190 |
plot = plotly.io.from_json(row["plot_json"])
|
191 |
plot.update_layout(autosize=True)
|
192 |
gr.Plot(plot, label=row["header"], scale=1)
|
193 |
+
time_periods_explanation_ui = gr.DataFrame(
|
194 |
+
dataframe_style(time_periods_explanation_df), label="Times of day ranges"
|
195 |
+
)
|
196 |
time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
|
197 |
+
gr.Markdown(
|
198 |
+
"""\
|
199 |
These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
|
200 |
|
201 |
Execution time refers to averaged time needed to execute one query.
|
|
|
203 |
Hours and times of day in the table and in the plot are based on Central European Time.
|
204 |
|
205 |
Measurements were made during a normal work week.
|
206 |
+
"""
|
207 |
+
)
|
208 |
+
# display rest of the plots
|
209 |
for index, row in time_of_day_plots[1:].iterrows():
|
210 |
plot = plotly.io.from_json(row["plot_json"])
|
211 |
plot.update_layout(autosize=True)
|
|
|
221 |
for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.
|
222 |
|
223 |
Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
|
224 |
+
"""
|
225 |
+
)
|
226 |
filter_button.click(
|
227 |
fn=filter_dataframes,
|
228 |
inputs=filter_textbox,
|
data/2024-02-08 14:18:16.852773_time_of_day_comparison.csv
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,time_of_day,execution_time,characters_count,words_count,provider
|
2 |
+
Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
|
3 |
+
Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
|
4 |
+
Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
|
5 |
+
Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
|
6 |
+
Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
|
7 |
+
Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
|
8 |
+
Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
|
9 |
+
Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
|
10 |
+
Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
|
11 |
+
Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
|
12 |
+
Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
|
13 |
+
Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
|
14 |
+
Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
|
15 |
+
Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
|
16 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
|
17 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
|
18 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
|
19 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
|
20 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
|
21 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
|
22 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
|
23 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
|
24 |
+
chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
|
25 |
+
chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
|
26 |
+
chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
|
27 |
+
chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
|
28 |
+
chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
|
29 |
+
chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
|
30 |
+
chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
|
31 |
+
chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
|
32 |
+
chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
|
33 |
+
chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
|
34 |
+
chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
|
35 |
+
chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
|
36 |
+
chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
|
37 |
+
chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
|
38 |
+
chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
|
39 |
+
chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
|
40 |
+
gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
|
41 |
+
gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
|
42 |
+
gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
|
43 |
+
gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
|
44 |
+
gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
|
45 |
+
gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
|
46 |
+
gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
|
47 |
+
gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
|
48 |
+
gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
|
49 |
+
gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
|
50 |
+
gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
|
51 |
+
gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
|
52 |
+
gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
|
53 |
+
gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
|
54 |
+
gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
|
55 |
+
gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
|
56 |
+
gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
|
57 |
+
gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
|
58 |
+
gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
|
59 |
+
gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
|
60 |
+
gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
|
61 |
+
gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
|
62 |
+
gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
|
63 |
+
gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
|
64 |
+
gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
|
65 |
+
gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
|
66 |
+
gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
|
67 |
+
gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
|
68 |
+
gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
|
69 |
+
gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
|
70 |
+
gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
|
71 |
+
gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
|
72 |
+
llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
|
73 |
+
llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
|
74 |
+
llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
|
75 |
+
llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
|
76 |
+
llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
|
77 |
+
llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
|
78 |
+
llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
|
79 |
+
llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
|
80 |
+
zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
|
81 |
+
zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
|
82 |
+
zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
|
83 |
+
zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
|
84 |
+
zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
|
85 |
+
zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
|
86 |
+
zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
|
87 |
+
zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
|
data/2024-02-08 14:18:58.194844_time_of_day_comparison.csv
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,time_of_day,execution_time,characters_count,words_count,provider
|
2 |
+
Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
|
3 |
+
Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
|
4 |
+
Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
|
5 |
+
Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
|
6 |
+
Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
|
7 |
+
Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
|
8 |
+
Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
|
9 |
+
Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
|
10 |
+
Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
|
11 |
+
Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
|
12 |
+
Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
|
13 |
+
Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
|
14 |
+
Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
|
15 |
+
Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
|
16 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
|
17 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
|
18 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
|
19 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
|
20 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
|
21 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
|
22 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
|
23 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
|
24 |
+
chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
|
25 |
+
chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
|
26 |
+
chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
|
27 |
+
chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
|
28 |
+
chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
|
29 |
+
chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
|
30 |
+
chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
|
31 |
+
chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
|
32 |
+
chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
|
33 |
+
chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
|
34 |
+
chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
|
35 |
+
chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
|
36 |
+
chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
|
37 |
+
chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
|
38 |
+
chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
|
39 |
+
chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
|
40 |
+
gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
|
41 |
+
gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
|
42 |
+
gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
|
43 |
+
gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
|
44 |
+
gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
|
45 |
+
gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
|
46 |
+
gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
|
47 |
+
gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
|
48 |
+
gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
|
49 |
+
gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
|
50 |
+
gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
|
51 |
+
gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
|
52 |
+
gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
|
53 |
+
gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
|
54 |
+
gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
|
55 |
+
gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
|
56 |
+
gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
|
57 |
+
gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
|
58 |
+
gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
|
59 |
+
gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
|
60 |
+
gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
|
61 |
+
gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
|
62 |
+
gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
|
63 |
+
gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
|
64 |
+
gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
|
65 |
+
gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
|
66 |
+
gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
|
67 |
+
gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
|
68 |
+
gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
|
69 |
+
gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
|
70 |
+
gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
|
71 |
+
gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
|
72 |
+
llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
|
73 |
+
llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
|
74 |
+
llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
|
75 |
+
llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
|
76 |
+
llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
|
77 |
+
llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
|
78 |
+
llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
|
79 |
+
llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
|
80 |
+
zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
|
81 |
+
zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
|
82 |
+
zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
|
83 |
+
zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
|
84 |
+
zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
|
85 |
+
zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
|
86 |
+
zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
|
87 |
+
zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
|
data/2024-02-08 14:20:56.432044_time_of_day_comparison.csv
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
provider,model,time_of_day,execution_time,characters_count,words_count
|
2 |
+
Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
|
3 |
+
Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
|
4 |
+
Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
|
5 |
+
Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
|
6 |
+
Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
|
7 |
+
Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
|
8 |
+
Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
|
9 |
+
Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
|
10 |
+
Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
|
11 |
+
Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
|
12 |
+
Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
|
13 |
+
Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
|
14 |
+
Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
|
15 |
+
Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
|
16 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
|
17 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
|
18 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
|
19 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
|
20 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
|
21 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
|
22 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
|
23 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
|
24 |
+
chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
|
25 |
+
chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
|
26 |
+
chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
|
27 |
+
chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
|
28 |
+
chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
|
29 |
+
chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
|
30 |
+
chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
|
31 |
+
chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
|
32 |
+
chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
|
33 |
+
chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
|
34 |
+
chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
|
35 |
+
chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
|
36 |
+
chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
|
37 |
+
chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
|
38 |
+
chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
|
39 |
+
chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
|
40 |
+
gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
|
41 |
+
gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
|
42 |
+
gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
|
43 |
+
gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
|
44 |
+
gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
|
45 |
+
gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
|
46 |
+
gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
|
47 |
+
gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
|
48 |
+
gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
|
49 |
+
gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
|
50 |
+
gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
|
51 |
+
gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
|
52 |
+
gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
|
53 |
+
gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
|
54 |
+
gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
|
55 |
+
gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
|
56 |
+
gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
|
57 |
+
gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
|
58 |
+
gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
|
59 |
+
gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
|
60 |
+
gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
|
61 |
+
gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
|
62 |
+
gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
|
63 |
+
gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
|
64 |
+
gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
|
65 |
+
gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
|
66 |
+
gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
|
67 |
+
gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
|
68 |
+
gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
|
69 |
+
gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
|
70 |
+
gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
|
71 |
+
gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
|
72 |
+
llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
|
73 |
+
llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
|
74 |
+
llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
|
75 |
+
llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
|
76 |
+
llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
|
77 |
+
llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
|
78 |
+
llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
|
79 |
+
llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
|
80 |
+
zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
|
81 |
+
zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
|
82 |
+
zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
|
83 |
+
zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
|
84 |
+
zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
|
85 |
+
zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
|
86 |
+
zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
|
87 |
+
zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
|
data/2024-02-08 14:22:42.700060_time_of_day_comparison.csv
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,time_of_day,execution_time,characters_count,words_count
|
2 |
+
Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35
|
3 |
+
Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25
|
4 |
+
Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8
|
5 |
+
Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1
|
6 |
+
Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125
|
7 |
+
Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95
|
8 |
+
Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86
|
9 |
+
Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28
|
10 |
+
Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156
|
11 |
+
Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727
|
12 |
+
Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545
|
13 |
+
Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143
|
14 |
+
Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789
|
15 |
+
Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182
|
16 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53
|
17 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6
|
18 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08
|
19 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9
|
20 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96
|
21 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113
|
22 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2
|
23 |
+
TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6
|
24 |
+
chat-bison,midnight,3.890243631601334,398.075,49.0
|
25 |
+
chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146
|
26 |
+
chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88
|
27 |
+
chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615
|
28 |
+
chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545
|
29 |
+
chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89
|
30 |
+
chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95
|
31 |
+
chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9
|
32 |
+
chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94
|
33 |
+
chat-bison-32k,midnight,4.128177767992019,389.925,48.025
|
34 |
+
chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85
|
35 |
+
chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85
|
36 |
+
chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925
|
37 |
+
chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545
|
38 |
+
chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5
|
39 |
+
chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805
|
40 |
+
chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85
|
41 |
+
chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85
|
42 |
+
gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715
|
43 |
+
gemini-pro,morning,2.497767536007628,371.93,59.39
|
44 |
+
gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231
|
45 |
+
gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1
|
46 |
+
gemini-pro,evening,2.86901999375759,366.4,55.045
|
47 |
+
gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35
|
48 |
+
gemini-pro,midnight,3.338477972348531,369.825,55.9125
|
49 |
+
gemini-pro,night,2.8375814715210272,374.8,60.04
|
50 |
+
gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444
|
51 |
+
gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889
|
52 |
+
gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476
|
53 |
+
gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333
|
54 |
+
gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571
|
55 |
+
gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996
|
56 |
+
gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05
|
57 |
+
gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075
|
58 |
+
gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444
|
59 |
+
gpt-4,morning,12.759107512468733,338.18333333333334,46.85
|
60 |
+
gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857
|
61 |
+
gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714
|
62 |
+
gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714
|
63 |
+
gpt-4,late evening,14.298642643005493,314.336,37.012
|
64 |
+
gpt-4,midnight,12.3578163115329,334.075,41.35
|
65 |
+
gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923
|
66 |
+
gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667
|
67 |
+
gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778
|
68 |
+
gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333
|
69 |
+
gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191
|
70 |
+
gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45
|
71 |
+
gpt-4-turbo,late evening,14.592236209392548,413.61,44.8
|
72 |
+
gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182
|
73 |
+
gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308
|
74 |
+
llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714
|
75 |
+
llama-2-70b-chat,morning,2.872361832027194,283.35,43.45
|
76 |
+
llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536
|
77 |
+
llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545
|
78 |
+
llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4
|
79 |
+
llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862
|
80 |
+
llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875
|
81 |
+
llama-2-70b-chat,night,2.8264514451677147,313.71,48.42
|
82 |
+
zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45
|
83 |
+
zephyr-7b-beta,morning,4.056525647640228,386.3,63.35
|
84 |
+
zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666
|
85 |
+
zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9
|
86 |
+
zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5
|
87 |
+
zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875
|
88 |
+
zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667
|
89 |
+
zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667
|
data/time_of_day_plots.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pipeline/models.py
CHANGED
@@ -47,7 +47,7 @@ MODELS = [
|
|
47 |
cost_per_million_input_tokens=1,
|
48 |
cost_per_million_output_tokens=2,
|
49 |
# https://learn.microsoft.com/en-us/answers/questions/1356487/what-is-the-exact-maximum-input-tokens-of-azure-gp
|
50 |
-
input_size=4096
|
51 |
),
|
52 |
Model(
|
53 |
"gpt-4-turbo",
|
@@ -150,4 +150,4 @@ MODELS = [
|
|
150 |
MODELS = [model for model in MODELS
|
151 |
if model.model_name=="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
152 |
or model.model_name=="huggingface/HuggingFaceH4/zephyr-7b-beta"]
|
153 |
-
"""
|
|
|
47 |
cost_per_million_input_tokens=1,
|
48 |
cost_per_million_output_tokens=2,
|
49 |
# https://learn.microsoft.com/en-us/answers/questions/1356487/what-is-the-exact-maximum-input-tokens-of-azure-gp
|
50 |
+
input_size=4096,
|
51 |
),
|
52 |
Model(
|
53 |
"gpt-4-turbo",
|
|
|
150 |
MODELS = [model for model in MODELS
|
151 |
if model.model_name=="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
152 |
or model.model_name=="huggingface/HuggingFaceH4/zephyr-7b-beta"]
|
153 |
+
"""
|