piotr-szleg-bards-ai commited on
Commit
adcaa2b
·
1 Parent(s): e6c9478

2024-02-08 14:48:57 Publish script update

Browse files
app.py CHANGED
@@ -32,17 +32,27 @@ We used litellm python library for all of the models which naturally adds some
32
  We also attempted to use HF Endpoints as much as possible due to their popularity and transparency of how the model is executed.
33
  """
34
 
35
- time_periods_explanation_df = pd.DataFrame({
36
- 'time_of_day': ["early morning", "morning", "afternoon", "late afternoon", "evening", "late evening", "midnight", "night"],
37
- 'hour_range': ["6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "0-2", "3-5"]
38
- })
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  queries_config = QueriesConfig()
41
 
42
- output_types_df = pd.DataFrame({
43
- "Output Type": queries_config.query_template.keys(),
44
- "Added text": queries_config.query_template.values()
45
- })
46
 
47
  summary_df: pd.DataFrame = pd.read_csv("data/2024-02-05 23:33:22.947120_summary.csv")
48
  time_of_day_comparison_df = pd.read_csv("data/2024-02-06 09:49:19.637072_time_of_day_comparison.csv")
@@ -140,12 +150,13 @@ with gr.Blocks() as demo:
140
  with gr.Row():
141
  filter_textbox.render()
142
  filter_button.render()
143
-
144
  with gr.Tab("About this project"):
145
- gr.Markdown(README.format(
146
- queries_config.base_query_template.replace("```", "'''"),
147
- output_types_df.to_markdown(index=False)
148
- ))
 
149
  with gr.Tab("General plots"):
150
  for index, row in general_plots.iterrows():
151
  plot = plotly.io.from_json(row["plot_json"])
@@ -158,14 +169,16 @@ with gr.Blocks() as demo:
158
  collapse_languages_button.render()
159
  collapse_output_method_button.render()
160
  summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
161
- gr.Markdown("""\
 
162
  This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.
163
 
164
  Execution time refers to averaged time needed to execute one query.
165
 
166
  To count words we split the output string by whitespace `\w` regex character.
167
 
168
- Chunk sizes are measured in the characters count.""")
 
169
  for index, row in output_plots.iterrows():
170
  plot = plotly.io.from_json(row["plot_json"])
171
  plot.update_layout(autosize=True)
@@ -177,9 +190,12 @@ Chunk sizes are measured in the characters count.""")
177
  plot = plotly.io.from_json(row["plot_json"])
178
  plot.update_layout(autosize=True)
179
  gr.Plot(plot, label=row["header"], scale=1)
180
- time_periods_explanation_ui = gr.DataFrame(dataframe_style(time_periods_explanation_df), label="Times of day ranges")
 
 
181
  time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
182
- gr.Markdown("""\
 
183
  These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
184
 
185
  Execution time refers to averaged time needed to execute one query.
@@ -187,8 +203,9 @@ Execution time refers to averaged time needed to execute one query.
187
  Hours and times of day in the table and in the plot are based on Central European Time.
188
 
189
  Measurements were made during a normal work week.
190
- """)
191
- # display rest of the plots
 
192
  for index, row in time_of_day_plots[1:].iterrows():
193
  plot = plotly.io.from_json(row["plot_json"])
194
  plot.update_layout(autosize=True)
@@ -204,7 +221,8 @@ Hugging Face Inference Endpoints are charged by hour so to compare different pro
204
  for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.
205
 
206
  Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
207
- """)
 
208
  filter_button.click(
209
  fn=filter_dataframes,
210
  inputs=filter_textbox,
 
32
  We also attempted to use HF Endpoints as much as possible due to their popularity and transparency of how the model is executed.
33
  """
34
 
35
+ time_periods_explanation_df = pd.DataFrame(
36
+ {
37
+ "time_of_day": [
38
+ "early morning",
39
+ "morning",
40
+ "afternoon",
41
+ "late afternoon",
42
+ "evening",
43
+ "late evening",
44
+ "midnight",
45
+ "night",
46
+ ],
47
+ "hour_range": ["6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "0-2", "3-5"],
48
+ }
49
+ )
50
 
51
  queries_config = QueriesConfig()
52
 
53
+ output_types_df = pd.DataFrame(
54
+ {"Output Type": queries_config.query_template.keys(), "Added text": queries_config.query_template.values()}
55
+ )
 
56
 
57
  summary_df: pd.DataFrame = pd.read_csv("data/2024-02-05 23:33:22.947120_summary.csv")
58
  time_of_day_comparison_df = pd.read_csv("data/2024-02-06 09:49:19.637072_time_of_day_comparison.csv")
 
150
  with gr.Row():
151
  filter_textbox.render()
152
  filter_button.render()
153
+
154
  with gr.Tab("About this project"):
155
+ gr.Markdown(
156
+ README.format(
157
+ queries_config.base_query_template.replace("```", "'''"), output_types_df.to_markdown(index=False)
158
+ )
159
+ )
160
  with gr.Tab("General plots"):
161
  for index, row in general_plots.iterrows():
162
  plot = plotly.io.from_json(row["plot_json"])
 
169
  collapse_languages_button.render()
170
  collapse_output_method_button.render()
171
  summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
172
+ gr.Markdown(
173
+ """\
174
  This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.
175
 
176
  Execution time refers to averaged time needed to execute one query.
177
 
178
  To count words we split the output string by whitespace `\w` regex character.
179
 
180
+ Chunk sizes are measured in the characters count."""
181
+ )
182
  for index, row in output_plots.iterrows():
183
  plot = plotly.io.from_json(row["plot_json"])
184
  plot.update_layout(autosize=True)
 
190
  plot = plotly.io.from_json(row["plot_json"])
191
  plot.update_layout(autosize=True)
192
  gr.Plot(plot, label=row["header"], scale=1)
193
+ time_periods_explanation_ui = gr.DataFrame(
194
+ dataframe_style(time_periods_explanation_df), label="Times of day ranges"
195
+ )
196
  time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
197
+ gr.Markdown(
198
+ """\
199
  These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
200
 
201
  Execution time refers to averaged time needed to execute one query.
 
203
  Hours and times of day in the table and in the plot are based on Central European Time.
204
 
205
  Measurements were made during a normal work week.
206
+ """
207
+ )
208
+ # display rest of the plots
209
  for index, row in time_of_day_plots[1:].iterrows():
210
  plot = plotly.io.from_json(row["plot_json"])
211
  plot.update_layout(autosize=True)
 
221
  for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.
222
 
223
  Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
224
+ """
225
+ )
226
  filter_button.click(
227
  fn=filter_dataframes,
228
  inputs=filter_textbox,
data/2024-02-08 14:18:16.852773_time_of_day_comparison.csv ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model,time_of_day,execution_time,characters_count,words_count,provider
2
+ Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
3
+ Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
4
+ Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
5
+ Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
6
+ Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
7
+ Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
8
+ Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
9
+ Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
10
+ Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
11
+ Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
12
+ Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
13
+ Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
14
+ Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
15
+ Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
16
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
17
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
18
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
19
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
20
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
21
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
22
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
23
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
24
+ chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
25
+ chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
26
+ chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
27
+ chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
28
+ chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
29
+ chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
30
+ chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
31
+ chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
32
+ chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
33
+ chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
34
+ chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
35
+ chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
36
+ chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
37
+ chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
38
+ chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
39
+ chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
40
+ gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
41
+ gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
42
+ gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
43
+ gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
44
+ gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
45
+ gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
46
+ gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
47
+ gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
48
+ gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
49
+ gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
50
+ gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
51
+ gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
52
+ gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
53
+ gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
54
+ gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
55
+ gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
56
+ gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
57
+ gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
58
+ gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
59
+ gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
60
+ gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
61
+ gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
62
+ gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
63
+ gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
64
+ gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
65
+ gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
66
+ gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
67
+ gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
68
+ gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
69
+ gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
70
+ gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
71
+ gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
72
+ llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
73
+ llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
74
+ llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
75
+ llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
76
+ llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
77
+ llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
78
+ llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
79
+ llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
80
+ zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
81
+ zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
82
+ zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
83
+ zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
84
+ zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
85
+ zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
86
+ zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
87
+ zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
data/2024-02-08 14:18:58.194844_time_of_day_comparison.csv ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model,time_of_day,execution_time,characters_count,words_count,provider
2
+ Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
3
+ Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
4
+ Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
5
+ Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
6
+ Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
7
+ Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
8
+ Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
9
+ Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
10
+ Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
11
+ Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
12
+ Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
13
+ Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
14
+ Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
15
+ Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
16
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
17
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
18
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
19
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
20
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
21
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
22
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
23
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
24
+ chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
25
+ chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
26
+ chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
27
+ chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
28
+ chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
29
+ chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
30
+ chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
31
+ chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
32
+ chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
33
+ chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
34
+ chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
35
+ chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
36
+ chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
37
+ chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
38
+ chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
39
+ chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
40
+ gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
41
+ gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
42
+ gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
43
+ gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
44
+ gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
45
+ gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
46
+ gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
47
+ gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
48
+ gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
49
+ gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
50
+ gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
51
+ gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
52
+ gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
53
+ gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
54
+ gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
55
+ gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
56
+ gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
57
+ gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
58
+ gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
59
+ gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
60
+ gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
61
+ gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
62
+ gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
63
+ gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
64
+ gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
65
+ gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
66
+ gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
67
+ gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
68
+ gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
69
+ gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
70
+ gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
71
+ gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
72
+ llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
73
+ llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
74
+ llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
75
+ llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
76
+ llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
77
+ llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
78
+ llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
79
+ llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
80
+ zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
81
+ zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
82
+ zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
83
+ zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
84
+ zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
85
+ zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
86
+ zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
87
+ zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
data/2024-02-08 14:20:56.432044_time_of_day_comparison.csv ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ provider,model,time_of_day,execution_time,characters_count,words_count
2
+ Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35,Hugging Face Inference Endpoint
3
+ Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25,Hugging Face Inference Endpoint
4
+ Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8,Hugging Face Inference Endpoint
5
+ Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1,Hugging Face Inference Endpoint
6
+ Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125,Hugging Face Inference Endpoint
7
+ Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95,Hugging Face Inference Endpoint
8
+ Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86,Together AI
9
+ Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28,Together AI
10
+ Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156,Together AI
11
+ Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727,Together AI
12
+ Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545,Together AI
13
+ Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143,Together AI
14
+ Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789,Together AI
15
+ Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182,Together AI
16
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53,Hugging Face Inference Endpoint
17
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6,Hugging Face Inference Endpoint
18
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08,Hugging Face Inference Endpoint
19
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9,Hugging Face Inference Endpoint
20
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96,Hugging Face Inference Endpoint
21
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113,Hugging Face Inference Endpoint
22
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2,Hugging Face Inference Endpoint
23
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6,Hugging Face Inference Endpoint
24
+ chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146,Google VertexAI
25
+ chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88,Google VertexAI
26
+ chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615,Google VertexAI
27
+ chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545,Google VertexAI
28
+ chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89,Google VertexAI
29
+ chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95,Google VertexAI
30
+ chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9,Google VertexAI
31
+ chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94,Google VertexAI
32
+ chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85,Google VertexAI
33
+ chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85,Google VertexAI
34
+ chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925,Google VertexAI
35
+ chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545,Google VertexAI
36
+ chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5,Google VertexAI
37
+ chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805,Google VertexAI
38
+ chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85,Google VertexAI
39
+ chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85,Google VertexAI
40
+ gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715,Google VertexAI
41
+ gemini-pro,morning,2.497767536007628,371.93,59.39,Google VertexAI
42
+ gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231,Google VertexAI
43
+ gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1,Google VertexAI
44
+ gemini-pro,evening,2.86901999375759,366.4,55.045,Google VertexAI
45
+ gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35,Google VertexAI
46
+ gemini-pro,midnight,3.338477972348531,369.825,55.9125,Google VertexAI
47
+ gemini-pro,night,2.8375814715210272,374.8,60.04,Google VertexAI
48
+ gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444,OpenAI
49
+ gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889,OpenAI
50
+ gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476,OpenAI
51
+ gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333,OpenAI
52
+ gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571,OpenAI
53
+ gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996,OpenAI
54
+ gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05,OpenAI
55
+ gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075,OpenAI
56
+ gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444,OpenAI
57
+ gpt-4,morning,12.759107512468733,338.18333333333334,46.85,OpenAI
58
+ gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857,OpenAI
59
+ gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714,OpenAI
60
+ gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714,OpenAI
61
+ gpt-4,late evening,14.298642643005493,314.336,37.012,OpenAI
62
+ gpt-4,midnight,12.3578163115329,334.075,41.35,OpenAI
63
+ gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923,OpenAI
64
+ gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667,OpenAI
65
+ gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778,OpenAI
66
+ gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333,OpenAI
67
+ gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191,OpenAI
68
+ gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45,OpenAI
69
+ gpt-4-turbo,late evening,14.592236209392548,413.61,44.8,OpenAI
70
+ gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182,OpenAI
71
+ gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308,OpenAI
72
+ llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714,Together AI
73
+ llama-2-70b-chat,morning,2.872361832027194,283.35,43.45,Together AI
74
+ llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536,Together AI
75
+ llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545,Together AI
76
+ llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4,Together AI
77
+ llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862,Together AI
78
+ llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875,Together AI
79
+ llama-2-70b-chat,night,2.8264514451677147,313.71,48.42,Together AI
80
+ zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45,Hugging Face Inference Endpoint
81
+ zephyr-7b-beta,morning,4.056525647640228,386.3,63.35,Hugging Face Inference Endpoint
82
+ zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666,Hugging Face Inference Endpoint
83
+ zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9,Hugging Face Inference Endpoint
84
+ zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5,Hugging Face Inference Endpoint
85
+ zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875,Hugging Face Inference Endpoint
86
+ zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667,Hugging Face Inference Endpoint
87
+ zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667,Hugging Face Inference Endpoint
data/2024-02-08 14:22:42.700060_time_of_day_comparison.csv ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model,time_of_day,execution_time,characters_count,words_count
2
+ Mistral-7B-Instruct-v0.2,morning,3.734026002883911,362.9,58.35
3
+ Mistral-7B-Instruct-v0.2,afternoon,3.228973722457886,222.0625,32.25
4
+ Mistral-7B-Instruct-v0.2,late afternoon,3.2048643112182615,219.8625,31.8
5
+ Mistral-7B-Instruct-v0.2,evening,3.397640073299408,261.18333333333334,40.1
6
+ Mistral-7B-Instruct-v0.2,late evening,3.389284573495388,175.79375,25.68125
7
+ Mistral-7B-Instruct-v0.2,midnight,1.9149879813194275,37.8,2.95
8
+ Mixtral-8x7B-Instruct-v0.1,early morning,4.526968242530536,285.045,41.86
9
+ Mixtral-8x7B-Instruct-v0.1,morning,3.9661054956285575,304.82,47.28
10
+ Mixtral-8x7B-Instruct-v0.1,afternoon,5.362903979589355,369.3192307692308,54.353846153846156
11
+ Mixtral-8x7B-Instruct-v0.1,late afternoon,5.80184749175942,347.9681818181818,47.27272727272727
12
+ Mixtral-8x7B-Instruct-v0.1,evening,3.6435119574237023,326.69,48.545
13
+ Mixtral-8x7B-Instruct-v0.1,late evening,5.62397656769588,395.15714285714284,49.02857142857143
14
+ Mixtral-8x7B-Instruct-v0.1,midnight,4.639010797279158,323.0394736842105,42.69210526315789
15
+ Mixtral-8x7B-Instruct-v0.1,night,4.009439338194697,301.24545454545455,42.21818181818182
16
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,early morning,2.0273348593711855,372.13,62.53
17
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,morning,1.9041210174560548,372.05,62.6
18
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,afternoon,1.8381905496120452,308.795,51.08
19
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late afternoon,1.7547113946505954,285.17857142857144,46.9
20
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,evening,1.7984187936782836,313.99,51.96
21
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,late evening,1.5875422928068372,192.78333333333333,31.261111111111113
22
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,midnight,1.6341248273849487,210.2,34.2
23
+ TinyLlama/TinyLlama-1.1B-Chat-v1.0,night,2.0128010153770446,372.05,62.6
24
+ chat-bison,midnight,3.890243631601334,398.075,49.0
25
+ chat-bison (PaLM 2),early morning,2.4665334616388592,381.9214285714286,60.892857142857146
26
+ chat-bison (PaLM 2),morning,2.488477897644043,381.73,60.88
27
+ chat-bison (PaLM 2),afternoon,2.6460144804074215,376.28076923076924,55.965384615384615
28
+ chat-bison (PaLM 2),late afternoon,3.0387172081253744,381.1363636363636,53.35454545454545
29
+ chat-bison (PaLM 2),evening,2.688272579908371,367.07,55.89
30
+ chat-bison (PaLM 2),late evening,2.7250528037548065,382.725,52.95
31
+ chat-bison (PaLM 2),midnight,2.468383938074112,381.95,60.9
32
+ chat-bison (PaLM 2),night,2.460119960308075,381.92,60.94
33
+ chat-bison-32k,midnight,4.128177767992019,389.925,48.025
34
+ chat-bison-32k (PaLM 2 32K),early morning,9.141417106560299,335.75,53.85
35
+ chat-bison-32k (PaLM 2 32K),morning,7.7035503840446475,335.75,53.85
36
+ chat-bison-32k (PaLM 2 32K),afternoon,5.014458654477046,339.3692307692308,49.323076923076925
37
+ chat-bison-32k (PaLM 2 32K),late afternoon,4.5047362284226855,348.65909090909093,48.35454545454545
38
+ chat-bison-32k (PaLM 2 32K),evening,7.7332194912433625,329.46,49.5
39
+ chat-bison-32k (PaLM 2 32K),late evening,7.796841062307358,349.95,47.805
40
+ chat-bison-32k (PaLM 2 32K),midnight,7.7498266498247785,335.75,53.85
41
+ chat-bison-32k (PaLM 2 32K),night,6.491292915344238,335.75,53.85
42
+ gemini-pro,early morning,2.7453590130460435,381.2214285714286,60.964285714285715
43
+ gemini-pro,morning,2.497767536007628,371.93,59.39
44
+ gemini-pro,afternoon,2.816922114008949,360.62307692307695,53.25769230769231
45
+ gemini-pro,late afternoon,2.9268629640903114,364.57272727272726,50.1
46
+ gemini-pro,evening,2.86901999375759,366.4,55.045
47
+ gemini-pro,late evening,3.7189874940246117,390.9142857142857,51.35
48
+ gemini-pro,midnight,3.338477972348531,369.825,55.9125
49
+ gemini-pro,night,2.8375814715210272,374.8,60.04
50
+ gpt-3.5-turbo,early morning,3.787998208734724,403.74444444444447,47.34444444444444
51
+ gpt-3.5-turbo,morning,3.126271222697364,389.9888888888889,50.93888888888889
52
+ gpt-3.5-turbo,afternoon,3.9458200880459375,381.4428571428571,43.76190476190476
53
+ gpt-3.5-turbo,late afternoon,4.384064777692159,396.4357142857143,43.28333333333333
54
+ gpt-3.5-turbo,evening,3.5153889304115657,385.18095238095236,46.01428571428571
55
+ gpt-3.5-turbo,late evening,5.110168156187617,422.73510971786834,45.358934169278996
56
+ gpt-3.5-turbo,midnight,3.822115447632102,426.71923076923076,49.05
57
+ gpt-3.5-turbo,night,6.062970260473398,418.6192307692308,44.926923076923075
58
+ gpt-4,early morning,14.348626694414351,323.5388888888889,40.544444444444444
59
+ gpt-4,morning,12.759107512468733,338.18333333333334,46.85
60
+ gpt-4,afternoon,16.002364798386893,318.3095238095238,38.77142857142857
61
+ gpt-4,late afternoon,16.80607506932254,313.3595238095238,37.49285714285714
62
+ gpt-4,evening,13.841120740345547,318.0809523809524,40.19285714285714
63
+ gpt-4,late evening,14.298642643005493,314.336,37.012
64
+ gpt-4,midnight,12.3578163115329,334.075,41.35
65
+ gpt-4,night,12.813134506115546,316.93461538461537,37.93076923076923
66
+ gpt-4-turbo,early morning,11.555620827939775,357.65555555555557,47.21666666666667
67
+ gpt-4-turbo,morning,13.686854598257277,381.8888888888889,55.02777777777778
68
+ gpt-4-turbo,afternoon,13.997754749229976,351.01190476190476,46.03333333333333
69
+ gpt-4-turbo,late afternoon,22.320911452883767,381.65714285714284,47.35476190476191
70
+ gpt-4-turbo,evening,16.550320884159632,382.31666666666666,48.45
71
+ gpt-4-turbo,late evening,14.592236209392548,413.61,44.8
72
+ gpt-4-turbo,midnight,13.770663784850727,382.7613636363636,47.61818181818182
73
+ gpt-4-turbo,night,14.254795966698573,352.54615384615386,46.37692307692308
74
+ llama-2-70b-chat,early morning,2.8660141522424265,289.6642857142857,44.614285714285714
75
+ llama-2-70b-chat,morning,2.872361832027194,283.35,43.45
76
+ llama-2-70b-chat,afternoon,4.234376892130426,375.44615384615383,55.238461538461536
77
+ llama-2-70b-chat,late afternoon,3.6833307104881365,433.6636363636364,59.445454545454545
78
+ llama-2-70b-chat,evening,2.9706250462084185,317.245,47.4
79
+ llama-2-70b-chat,late evening,4.719581684340602,572.1689655172414,79.83103448275862
80
+ llama-2-70b-chat,midnight,3.249819871626402,346.8875,52.06875
81
+ llama-2-70b-chat,night,2.8264514451677147,313.71,48.42
82
+ zephyr-7b-beta,early morning,3.937663261095683,273.03333333333336,43.45
83
+ zephyr-7b-beta,morning,4.056525647640228,386.3,63.35
84
+ zephyr-7b-beta,afternoon,3.5789777278900146,277.6,44.016666666666666
85
+ zephyr-7b-beta,late afternoon,3.4592524923459447,248.59,38.9
86
+ zephyr-7b-beta,evening,3.5673056403795878,273.3666666666667,43.5
87
+ zephyr-7b-beta,late evening,3.45343524068594,176.23125,27.21875
88
+ zephyr-7b-beta,midnight,3.7253047794103624,217.82083333333333,33.67916666666667
89
+ zephyr-7b-beta,night,3.6954557319482166,216.55833333333334,33.46666666666667
data/time_of_day_plots.csv CHANGED
The diff for this file is too large to render. See raw diff
 
pipeline/models.py CHANGED
@@ -47,7 +47,7 @@ MODELS = [
47
  cost_per_million_input_tokens=1,
48
  cost_per_million_output_tokens=2,
49
  # https://learn.microsoft.com/en-us/answers/questions/1356487/what-is-the-exact-maximum-input-tokens-of-azure-gp
50
- input_size=4096
51
  ),
52
  Model(
53
  "gpt-4-turbo",
@@ -150,4 +150,4 @@ MODELS = [
150
  MODELS = [model for model in MODELS
151
  if model.model_name=="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1"
152
  or model.model_name=="huggingface/HuggingFaceH4/zephyr-7b-beta"]
153
- """
 
47
  cost_per_million_input_tokens=1,
48
  cost_per_million_output_tokens=2,
49
  # https://learn.microsoft.com/en-us/answers/questions/1356487/what-is-the-exact-maximum-input-tokens-of-azure-gp
50
+ input_size=4096,
51
  ),
52
  Model(
53
  "gpt-4-turbo",
 
150
  MODELS = [model for model in MODELS
151
  if model.model_name=="together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1"
152
  or model.model_name=="huggingface/HuggingFaceH4/zephyr-7b-beta"]
153
+ """