import re import gradio as gr import pandas as pd import plotly from pandas.api.types import is_numeric_dtype from pipeline.config import LLMBoardConfig, QueriesConfig README = """

About this project

This project analyses different models and providers from the perspective of an application developer.
Models are asked to summarize a text in different languages and using different output formats with following prompt:

{}
""" summary_df: pd.DataFrame = pd.read_csv("data/2024-02-03 22:42:23.322179_summary.csv") time_of_day_comparison_df = pd.read_csv("data/2024-02-03 22:33:36.957992_time_of_day_comparison.csv") general_plots = pd.read_csv("data/2024-02-03 22:42:30.259126_general_plot.csv") model_costs_df = pd.read_csv("data/2024-01-26 16:32:54.481637_model_costs.csv") with open("data/time_of_day_plot.json", "r") as f: time_of_day_plot = plotly.io.from_json(f.read()) searched_model_name = "" collapse_languages = False collapse_output_method = False def filter_dataframes(input: str): global searched_model_name input = input.lower() searched_model_name = input return dataframes() def collapse_languages_toggle(): global collapse_languages if collapse_languages: collapse_languages = False button_text = "Collapse languages" else: collapse_languages = True button_text = "Un-collapse languages" return dataframes()[0], button_text def collapse_output_method_toggle(): global collapse_output_method if collapse_output_method: collapse_output_method = False button_text = "Collapse output method" else: collapse_output_method = True button_text = "Un-collapse output method" return dataframes()[0], button_text def dataframes(): global collapse_languages, collapse_output_method, searched_model_name, summary_df, time_of_day_comparison_df, model_costs_df summary_df_columns = summary_df.columns.to_list() group_columns = LLMBoardConfig().group_columns.copy() if collapse_languages: summary_df_columns.remove("language") group_columns.remove("language") if collapse_output_method: summary_df_columns.remove("template_name") group_columns.remove("template_name") summary_df_processed = summary_df[summary_df_columns].groupby(by=group_columns).mean().reset_index() return ( dataframe_style(summary_df_processed[summary_df_processed.model.str.lower().str.contains(searched_model_name)]), dataframe_style( time_of_day_comparison_df[time_of_day_comparison_df.model.str.lower().str.contains(searched_model_name)] ), dataframe_style(model_costs_df[model_costs_df.model.str.lower().str.contains(searched_model_name)]), ) def dataframe_style(df: pd.DataFrame): df = df.copy() df.columns = [snake_case_to_title(column) for column in df.columns] column_formats = {} for column in df.columns: if is_numeric_dtype(df[column]): if column == "execution_time": column_formats[column] = "{:.4f}" else: column_formats[column] = "{:.2f}" df = df.style.format(column_formats, na_rep="") return df def snake_case_to_title(text): # Convert snake_case to title-case words = re.split(r"_", text) title_words = [word.capitalize() for word in words] return " ".join(title_words) filter_textbox = gr.Textbox(label="Model name part") filter_button = gr.Button("Filter dataframes by model name") collapse_languages_button = gr.Button("Collapse languages") collapse_output_method_button = gr.Button("Collapse output method") last_textbox = 0 with gr.Blocks() as demo: gr.HTML("

LLM Board

" + README.format(QueriesConfig().base_query_template)) with gr.Row(): filter_textbox.render() filter_button.render() with gr.Tab("Basic information"): for index, row in general_plots.iterrows(): gr.Plot(plotly.io.from_json(row["plot_json"]), label=row["description"]) gr.Markdown(str(row["comment"])) with gr.Tab("Output characteristics"): with gr.Row(): collapse_languages_button.render() collapse_output_method_button.render() summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Statistics") with gr.Tab("Preformance by time of the day"): time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day") time_of_day_plot_ui = gr.Plot(time_of_day_plot, label="Time of the day plot") gr.Markdown("Hourly measurements were made in Central European Time.") with gr.Tab("Costs comparison"): models_costs_ui = gr.DataFrame(dataframe_style(model_costs_df), label="Costs comparison") gr.Markdown( 'Note that pause and resume time cost was not included in the "Cost per token" column calculation for the models billed hourly.' ) filter_button.click( fn=filter_dataframes, inputs=filter_textbox, outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui], api_name="filter_dataframes", ) filter_textbox.submit( fn=filter_dataframes, inputs=filter_textbox, outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui], api_name="filter_dataframes", ) collapse_languages_button.click( fn=collapse_languages_toggle, outputs=[summary_ui, collapse_languages_button], api_name="collapse_languages_toggle", ) collapse_output_method_button.click( fn=collapse_output_method_toggle, outputs=[summary_ui, collapse_output_method_button], api_name="collapse_output_method_toggle", ) demo.launch()