Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
from langchain.llms import OpenAIChat
|
4 |
from langchain.chains import LLMChain
|
5 |
from langchain.memory import ConversationBufferMemory
|
6 |
from langchain import PromptTemplate
|
7 |
-
import os
|
8 |
-
import tempfile
|
9 |
|
10 |
# Updated imports for Gradio components
|
11 |
from gradio.components import File, Textbox
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
def format_resume_to_yaml(api_key,
|
15 |
# Set the API key for OpenAI
|
16 |
os.environ['OPENAI_API_KEY'] = api_key
|
17 |
|
18 |
-
file_content = file.read()
|
19 |
-
|
20 |
# Check if the file content is not empty
|
21 |
if not file_content:
|
22 |
raise ValueError("The uploaded file is empty.")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
tmp_file.write(file_content)
|
27 |
-
tmp_file.flush()
|
28 |
-
os.fsync(tmp_file.fileno()) # Ensure data is written to disk
|
29 |
-
temp_file_path = tmp_file.name
|
30 |
-
|
31 |
-
# Now we can use PyPDFLoader with the path to the temporary file
|
32 |
-
try:
|
33 |
-
loader = PyPDFLoader(temp_file_path)
|
34 |
-
docs = loader.load_and_split() # This will return a list of text chunks from the PDF
|
35 |
-
except (IOError, PyPDF2.errors.PdfReaderError) as e: # Handle potential PDF reading errors
|
36 |
-
raise ValueError(f"An error occurred while processing the PDF: {e}")
|
37 |
-
|
38 |
-
# Combine the text chunks into a single string
|
39 |
-
resume_text = " ".join(docs)
|
40 |
|
41 |
template = """Format the provided resume to this YAML template:
|
42 |
---
|
@@ -70,7 +66,6 @@ def format_resume_to_yaml(api_key, file):
|
|
70 |
- name: ''
|
71 |
certifications:
|
72 |
- name: ''
|
73 |
-
|
74 |
{chat_history}
|
75 |
{human_input}"""
|
76 |
|
@@ -91,13 +86,8 @@ def format_resume_to_yaml(api_key, file):
|
|
91 |
res = llm_chain.predict(human_input=resume_text)
|
92 |
return res['output_text']
|
93 |
|
94 |
-
def on_file_upload(filename, file_content):
|
95 |
-
if not file_content:
|
96 |
-
gr.Interface.alert(title="Error", message="Please upload a valid PDF resume.")
|
97 |
-
|
98 |
def main():
|
99 |
input_api_key = Textbox(label="Enter your OpenAI API Key")
|
100 |
-
# Use 'binary' type to receive the file's content directly as a binary object
|
101 |
input_pdf_file = File(label="Upload your PDF resume", type="binary")
|
102 |
output_yaml = Textbox(label="Formatted Resume in YAML")
|
103 |
|
@@ -113,5 +103,3 @@ def main():
|
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
main()
|
116 |
-
|
117 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import PyPDF2
|
5 |
from langchain.llms import OpenAIChat
|
6 |
from langchain.chains import LLMChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain import PromptTemplate
|
|
|
|
|
9 |
|
10 |
# Updated imports for Gradio components
|
11 |
from gradio.components import File, Textbox
|
12 |
|
13 |
+
def extract_text_from_pdf_binary(pdf_binary):
|
14 |
+
text = ""
|
15 |
+
pdf_data = io.BytesIO(pdf_binary)
|
16 |
+
reader = PyPDF2.PdfReader(pdf_data)
|
17 |
+
num_pages = len(reader.pages)
|
18 |
+
|
19 |
+
for page in range(num_pages):
|
20 |
+
current_page = reader.pages[page]
|
21 |
+
page_text = current_page.extract_text()
|
22 |
+
if page_text: # Check if page_text is not None or empty
|
23 |
+
text += page_text
|
24 |
+
return text
|
25 |
|
26 |
+
def format_resume_to_yaml(api_key, file_content):
|
27 |
# Set the API key for OpenAI
|
28 |
os.environ['OPENAI_API_KEY'] = api_key
|
29 |
|
|
|
|
|
30 |
# Check if the file content is not empty
|
31 |
if not file_content:
|
32 |
raise ValueError("The uploaded file is empty.")
|
33 |
|
34 |
+
# Extract text from the uploaded PDF binary
|
35 |
+
resume_text = extract_text_from_pdf_binary(file_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
template = """Format the provided resume to this YAML template:
|
38 |
---
|
|
|
66 |
- name: ''
|
67 |
certifications:
|
68 |
- name: ''
|
|
|
69 |
{chat_history}
|
70 |
{human_input}"""
|
71 |
|
|
|
86 |
res = llm_chain.predict(human_input=resume_text)
|
87 |
return res['output_text']
|
88 |
|
|
|
|
|
|
|
|
|
89 |
def main():
|
90 |
input_api_key = Textbox(label="Enter your OpenAI API Key")
|
|
|
91 |
input_pdf_file = File(label="Upload your PDF resume", type="binary")
|
92 |
output_yaml = Textbox(label="Formatted Resume in YAML")
|
93 |
|
|
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
main()
|
|
|
|