Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,284 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from typing import Union
|
3 |
-
|
4 |
-
from pypdf import PdfReader
|
5 |
-
from transformers import pipeline
|
6 |
import gradio as gr
|
7 |
-
from langchain.llms import HuggingFaceHub
|
8 |
import os
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
11 |
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
gr.Interface(fn=answer_doc_question, inputs=[pdf_input, question], outputs="text").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
+
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chains import ChatVectorDBChain
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
+
from langchain_community.llms import HuggingFacePipeline
|
12 |
+
from langchain.chains import ConversationChain
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
15 |
+
from langchain_community.chat_models.openai import ChatOpenAI
|
16 |
+
from langchain.chains import ConversationalRetrievalChain
|
17 |
+
from langchain.llms import OpenAI
|
18 |
+
|
19 |
+
from pathlib import Path
|
20 |
+
import chromadb
|
21 |
+
from unidecode import unidecode
|
22 |
+
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
import transformers
|
25 |
+
import torch
|
26 |
+
import tqdm
|
27 |
+
import accelerate
|
28 |
+
import re
|
29 |
+
|
30 |
+
|
31 |
TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
32 |
|
33 |
|
34 |
+
|
35 |
+
# Load PDF document and create doc splits
|
36 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
37 |
+
# Processing for one document only
|
38 |
+
# loader = PyPDFLoader(file_path)
|
39 |
+
# pages = loader.load()
|
40 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
41 |
+
pages = []
|
42 |
+
for loader in loaders:
|
43 |
+
pages.extend(loader.load())
|
44 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
45 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
46 |
+
chunk_size = chunk_size,
|
47 |
+
chunk_overlap = chunk_overlap)
|
48 |
+
doc_splits = text_splitter.split_documents(pages)
|
49 |
+
return doc_splits
|
50 |
+
|
51 |
+
|
52 |
+
# Initialize your vector database with OpenAIEmbeddings and persist it
|
53 |
+
def create_db(documents, collection_name, persist_directory="."):
|
54 |
+
embeddings = OpenAIEmbeddings()
|
55 |
+
vectordb = Chroma.from_documents(
|
56 |
+
documents=documents,
|
57 |
+
embedding=embeddings,
|
58 |
+
collection_name=collection_name,
|
59 |
+
persist_directory=persist_directory
|
60 |
+
)
|
61 |
+
vectordb.persist()
|
62 |
+
return vectordb
|
63 |
+
|
64 |
+
# Load vector database
|
65 |
+
def load_db():
|
66 |
+
embedding = HuggingFaceEmbeddings()
|
67 |
+
vectordb = Chroma(
|
68 |
+
# persist_directory=default_persist_directory,
|
69 |
+
embedding_function=embedding)
|
70 |
+
return vectordb
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
# Assuming vectordb is correctly initialized and persisted as shown above
|
76 |
+
def initialize_llmchain(vectordb, model_name="gpt-3.5-turbo", temperature=0.9):
|
77 |
+
chat_model = ChatOpenAI(temperature=temperature, model_name=model_name)
|
78 |
+
chat_vector_db_chain = ChatVectorDBChain.from_llm(
|
79 |
+
llm=chat_model,
|
80 |
+
vectordb=vectordb,
|
81 |
+
return_source_documents=True
|
82 |
+
)
|
83 |
+
return chat_vector_db_chain
|
84 |
+
|
85 |
+
# Example usage
|
86 |
+
if __name__ == "__main__":
|
87 |
+
# Suppose `documents` is a list of your documents and `collection_name` is your desired collection name
|
88 |
+
documents = [...] # your documents here
|
89 |
+
collection_name = "your_collection_name"
|
90 |
+
vectordb = create_db(documents, collection_name)
|
91 |
+
|
92 |
+
# Initialize the ChatVectorDBChain with the vector database
|
93 |
+
chat_vector_db_chain = initialize_chat_vector_db_chain(vectordb)
|
94 |
+
|
95 |
+
# Use the chain to process a query
|
96 |
+
query = "your query here"
|
97 |
+
result = chat_vector_db_chain({"question": query, "chat_history": ""})
|
98 |
+
|
99 |
+
print("Answer:")
|
100 |
+
print(result["answer"])
|
101 |
+
# Generate collection name for vector database
|
102 |
+
# - Use filepath as input, ensuring unicode text
|
103 |
+
def create_collection_name(filepath):
|
104 |
+
# Extract filename without extension
|
105 |
+
collection_name = Path(filepath).stem
|
106 |
+
# Fix potential issues from naming convention
|
107 |
+
## Remove space
|
108 |
+
collection_name = collection_name.replace(" ","-")
|
109 |
+
## ASCII transliterations of Unicode text
|
110 |
+
collection_name = unidecode(collection_name)
|
111 |
+
## Remove special characters
|
112 |
+
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
113 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
114 |
+
## Limit length to 50 characters
|
115 |
+
collection_name = collection_name[:50]
|
116 |
+
## Minimum length of 3 characters
|
117 |
+
if len(collection_name) < 3:
|
118 |
+
collection_name = collection_name + 'xyz'
|
119 |
+
print('Filepath: ', filepath)
|
120 |
+
print('Collection name: ', collection_name)
|
121 |
+
return collection_name
|
122 |
+
|
123 |
+
|
124 |
+
# Initialize database
|
125 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
126 |
+
# Create list of documents (when valid)
|
127 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
128 |
+
# Create collection_name for vector database
|
129 |
+
progress(0.1, desc="Creating collection name...")
|
130 |
+
collection_name = create_collection_name(list_file_path[0])
|
131 |
+
progress(0.25, desc="Loading document...")
|
132 |
+
# Load document and create splits
|
133 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
134 |
+
# Create or load vector database
|
135 |
+
progress(0.5, desc="Generating vector database...")
|
136 |
+
# global vector_db
|
137 |
+
vector_db = create_db(doc_splits, collection_name)
|
138 |
+
progress(0.9, desc="Done!")
|
139 |
+
return vector_db, collection_name, "Complete!"
|
140 |
+
|
141 |
+
|
142 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
143 |
+
# print("llm_option",llm_option)
|
144 |
+
llm_name = list_llm[llm_option]
|
145 |
+
print("llm_name: ",llm_name)
|
146 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
147 |
+
return qa_chain, "Complete!"
|
148 |
+
|
149 |
+
|
150 |
+
def format_chat_history(message, chat_history):
|
151 |
+
formatted_chat_history = []
|
152 |
+
for user_message, bot_message in chat_history:
|
153 |
+
formatted_chat_history.append(f"User: {user_message}")
|
154 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
155 |
+
return formatted_chat_history
|
156 |
+
|
157 |
|
158 |
+
def conversation(qa_chain, message, history):
|
159 |
+
formatted_chat_history = format_chat_history(message, history)
|
160 |
+
#print("formatted_chat_history",formatted_chat_history)
|
161 |
+
|
162 |
+
# Generate response using QA chain
|
163 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
164 |
+
response_answer = response["answer"]
|
165 |
+
if response_answer.find("Helpful Answer:") != -1:
|
166 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
167 |
+
response_sources = response["source_documents"]
|
168 |
+
response_source1 = response_sources[0].page_content.strip()
|
169 |
+
response_source2 = response_sources[1].page_content.strip()
|
170 |
+
response_source3 = response_sources[2].page_content.strip()
|
171 |
+
# Langchain sources are zero-based
|
172 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
173 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
174 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
175 |
+
# print ('chat response: ', response_answer)
|
176 |
+
# print('DB source', response_sources)
|
177 |
+
|
178 |
+
# Append user message and response to chat history
|
179 |
+
new_history = history + [(message, response_answer)]
|
180 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
181 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
182 |
+
|
183 |
|
184 |
+
def upload_file(file_obj):
|
185 |
+
list_file_path = []
|
186 |
+
for idx, file in enumerate(file_obj):
|
187 |
+
file_path = file_obj.name
|
188 |
+
list_file_path.append(file_path)
|
189 |
+
# print(file_path)
|
190 |
+
# initialize_database(file_path, progress)
|
191 |
+
return list_file_path
|
192 |
|
193 |
+
|
194 |
+
def demo():
|
195 |
+
with gr.Blocks(theme="base") as demo:
|
196 |
+
vector_db = gr.State()
|
197 |
+
qa_chain = gr.State()
|
198 |
+
collection_name = gr.State()
|
199 |
+
|
200 |
+
gr.Markdown(
|
201 |
+
"""PDF-based chatbot (by Dr. Aloke Upadhaya)</center></h2>
|
202 |
+
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
203 |
+
""")
|
204 |
+
|
205 |
+
with gr.Tab("Step 1 - Document pre-processing"):
|
206 |
+
with gr.Row():
|
207 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
208 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
209 |
+
with gr.Row():
|
210 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
211 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
212 |
+
with gr.Row():
|
213 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
214 |
+
with gr.Row():
|
215 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
216 |
+
with gr.Row():
|
217 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
218 |
+
with gr.Row():
|
219 |
+
db_btn = gr.Button("Generate vector database...")
|
220 |
+
|
221 |
+
with gr.Tab("Step 2 - QA chain initialization"):
|
222 |
+
with gr.Row():
|
223 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
224 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
225 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
226 |
+
with gr.Row():
|
227 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
228 |
+
with gr.Row():
|
229 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
230 |
+
with gr.Row():
|
231 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
232 |
+
with gr.Row():
|
233 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
234 |
+
with gr.Row():
|
235 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
236 |
|
237 |
+
with gr.Tab("Step 3 - Conversation with chatbot"):
|
238 |
+
chatbot = gr.Chatbot(height=300)
|
239 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
240 |
+
with gr.Row():
|
241 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
242 |
+
source1_page = gr.Number(label="Page", scale=1)
|
243 |
+
with gr.Row():
|
244 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
245 |
+
source2_page = gr.Number(label="Page", scale=1)
|
246 |
+
with gr.Row():
|
247 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
248 |
+
source3_page = gr.Number(label="Page", scale=1)
|
249 |
+
with gr.Row():
|
250 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
251 |
+
with gr.Row():
|
252 |
+
submit_btn = gr.Button("Submit")
|
253 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
254 |
+
|
255 |
+
# Preprocessing events
|
256 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
257 |
+
db_btn.click(initialize_database, \
|
258 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
259 |
+
outputs=[vector_db, collection_name, db_progress])
|
260 |
+
qachain_btn.click(initialize_LLM, \
|
261 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
262 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
263 |
+
inputs=None, \
|
264 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
265 |
+
queue=False)
|
266 |
|
267 |
+
# Chatbot events
|
268 |
+
msg.submit(conversation, \
|
269 |
+
inputs=[qa_chain, msg, chatbot], \
|
270 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
271 |
+
queue=False)
|
272 |
+
submit_btn.click(conversation, \
|
273 |
+
inputs=[qa_chain, msg, chatbot], \
|
274 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
275 |
+
queue=False)
|
276 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
277 |
+
inputs=None, \
|
278 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
279 |
+
queue=False)
|
280 |
+
demo.queue().launch(debug=True)
|
281 |
|
282 |
|
283 |
+
if __name__ == "__main__":
|
284 |
+
demo()
|
|