Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,151 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from langchain.document_loaders import PyPDFLoader
|
4 |
-
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.vectorstores import Chroma
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
chunks = []
|
10 |
-
# Assuming 'doc_pages' is a list of objects and each page has a text attribute
|
11 |
-
for page in doc_pages:
|
12 |
-
text = page.text # if the text is directly accessible like this; modify if a method is needed
|
13 |
-
start = 0
|
14 |
-
while start < len(text):
|
15 |
-
end = start + chunk_size
|
16 |
-
if end > len(text):
|
17 |
-
end = len(text)
|
18 |
-
chunks.append(text[start:end])
|
19 |
-
start += (chunk_size - chunk_overlap)
|
20 |
-
if end == len(text):
|
21 |
-
break
|
22 |
-
return chunks
|
23 |
|
24 |
-
|
25 |
-
os.environ['OPENAI_API_KEY'] = api_key
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
pages = loader.load()
|
30 |
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
vectordb.persist()
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=50, label="Chunk Size")
|
55 |
-
chunk_overlap = gr.Slider(minimum=0, maximum=300, value=50, step=10, label="Chunk Overlap")
|
56 |
-
submit_btn = gr.Button("Process PDF and Create VectorDB")
|
57 |
-
output = gr.Textbox(label="Output")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
submit_btn.click(
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
1 |
+
from typing import Any
|
2 |
import gradio as gr
|
3 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
|
4 |
from langchain.vectorstores import Chroma
|
5 |
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
|
|
10 |
|
11 |
+
import fitz
|
12 |
+
from PIL import Image
|
|
|
13 |
|
14 |
+
import chromadb
|
15 |
+
import re
|
16 |
+
import uuid
|
17 |
|
18 |
+
enable_box = gr.Textbox.update(value = None, placeholder = 'Upload your OpenAI API key',interactive = True)
|
19 |
+
disable_box = gr.Textbox.update(value = 'OpenAI API key is Set', interactive = False)
|
20 |
|
21 |
+
def set_apikey(api_key: str):
|
22 |
+
app.OPENAI_API_KEY = api_key
|
23 |
+
return disable_box
|
24 |
+
|
25 |
+
def enable_api_box():
|
26 |
+
return enable_box
|
|
|
27 |
|
28 |
+
def add_text(history, text: str):
|
29 |
+
if not text:
|
30 |
+
raise gr.Error('enter text')
|
31 |
+
history = history + [(text,'')]
|
32 |
+
return history
|
33 |
|
34 |
+
class my_app:
|
35 |
+
def __init__(self, OPENAI_API_KEY: str = None ) -> None:
|
36 |
+
self.OPENAI_API_KEY: str = OPENAI_API_KEY
|
37 |
+
self.chain = None
|
38 |
+
self.chat_history: list = []
|
39 |
+
self.N: int = 0
|
40 |
+
self.count: int = 0
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def __call__(self, file: str) -> Any:
|
43 |
+
if self.count==0:
|
44 |
+
self.chain = self.build_chain(file)
|
45 |
+
self.count+=1
|
46 |
+
return self.chain
|
47 |
+
|
48 |
+
def chroma_client(self):
|
49 |
+
#create a chroma client
|
50 |
+
client = chromadb.Client()
|
51 |
+
#create a collecyion
|
52 |
+
collection = client.get_or_create_collection(name="my-collection")
|
53 |
+
return client
|
54 |
+
|
55 |
+
def process_file(self,file: str):
|
56 |
+
loader = PyPDFLoader(file.name)
|
57 |
+
documents = loader.load()
|
58 |
+
pattern = r"/([^/]+)$"
|
59 |
+
match = re.search(pattern, file.name)
|
60 |
+
file_name = match.group(1)
|
61 |
+
return documents, file_name
|
62 |
+
|
63 |
+
def build_chain(self, file: str):
|
64 |
+
documents, file_name = self.process_file(file)
|
65 |
+
#Load embeddings model
|
66 |
+
embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
|
67 |
+
pdfsearch = Chroma.from_documents(documents, embeddings, collection_name= file_name,)
|
68 |
+
chain = ConversationalRetrievalChain.from_llm(
|
69 |
+
ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
|
70 |
+
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
|
71 |
+
return_source_documents=True,)
|
72 |
+
return chain
|
73 |
+
|
74 |
+
|
75 |
+
def get_response(history, query, file):
|
76 |
+
if not file:
|
77 |
+
raise gr.Error(message='Upload a PDF')
|
78 |
+
chain = app(file)
|
79 |
+
result = chain({"question": query, 'chat_history':app.chat_history},return_only_outputs=True)
|
80 |
+
app.chat_history += [(query, result["answer"])]
|
81 |
+
app.N = list(result['source_documents'][0])[1][1]['page']
|
82 |
+
for char in result['answer']:
|
83 |
+
history[-1][-1] += char
|
84 |
+
yield history,''
|
85 |
+
|
86 |
+
def render_file(file):
|
87 |
+
doc = fitz.open(file.name)
|
88 |
+
page = doc[app.N]
|
89 |
+
#Render the page as a PNG image with a resolution of 300 DPI
|
90 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
|
91 |
+
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
|
92 |
+
return image
|
93 |
+
|
94 |
+
def render_first(file):
|
95 |
+
doc = fitz.open(file.name)
|
96 |
+
page = doc[0]
|
97 |
+
#Render the page as a PNG image with a resolution of 300 DPI
|
98 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
|
99 |
+
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
|
100 |
+
return image,[]
|
101 |
+
|
102 |
+
app = my_app()
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
with gr.Column():
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column(scale=0.8):
|
107 |
+
api_key = gr.Textbox(placeholder='Enter OpenAI API key', show_label=False, interactive=True).style(container=False)
|
108 |
+
with gr.Column(scale=0.2):
|
109 |
+
change_api_key = gr.Button('Change Key')
|
110 |
+
with gr.Row():
|
111 |
+
chatbot = gr.Chatbot(value=[], elem_id='chatbot').style(height=650)
|
112 |
+
show_img = gr.Image(label='Upload PDF', tool='select' ).style(height=680)
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=0.60):
|
115 |
+
txt = gr.Textbox(
|
116 |
+
show_label=False,
|
117 |
+
placeholder="Enter text and press enter",
|
118 |
+
).style(container=False)
|
119 |
+
with gr.Column(scale=0.20):
|
120 |
+
submit_btn = gr.Button('submit')
|
121 |
+
with gr.Column(scale=0.20):
|
122 |
+
btn = gr.UploadButton("📁 upload a PDF", file_types=[".pdf"]).style()
|
123 |
+
|
124 |
+
api_key.submit(
|
125 |
+
fn=set_apikey,
|
126 |
+
inputs=[api_key],
|
127 |
+
outputs=[api_key,])
|
128 |
+
change_api_key.click(
|
129 |
+
fn= enable_api_box,
|
130 |
+
outputs=[api_key])
|
131 |
+
btn.upload(
|
132 |
+
fn=render_first,
|
133 |
+
inputs=[btn],
|
134 |
+
outputs=[show_img,chatbot],)
|
135 |
+
|
136 |
submit_btn.click(
|
137 |
+
fn=add_text,
|
138 |
+
inputs=[chatbot,txt],
|
139 |
+
outputs=[chatbot, ],
|
140 |
+
queue=False).success(
|
141 |
+
fn=get_response,
|
142 |
+
inputs = [chatbot, txt, btn],
|
143 |
+
outputs = [chatbot,txt]).success(
|
144 |
+
fn=render_file,
|
145 |
+
inputs = [btn],
|
146 |
+
outputs=[show_img]
|
147 |
)
|
148 |
|
149 |
+
|
150 |
+
demo.queue()
|
151 |
+
demo.launch()
|