Spaces:
Running
Running
File size: 10,601 Bytes
1ff5755 bb49f69 1ff5755 3fa2295 1ff5755 3fa2295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from flask import Flask, jsonify, request
import requests
import redis
import json
from flask_cors import CORS
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from history import load_dataset, get_unique_next_words_from_dataset
from dotenv import load_dotenv
import os
os.environ["TRANSFORMERS_CACHE"] = "/code/.cache"
from typing import List, Dict, Optional, Union
import logging
from most_repeted_sentences import sentences_name, get_most_repeated_sentences, save_most_repeated_sentences
load_dotenv()
app = Flask(__name__)
CORS(app)
# Setup logging
logging.basicConfig(level=logging.ERROR)
logger = logging.getLogger(__name__)
# Pixabay API setup
PIXABAY_URL = "https://pixabay.com/api/?key=${pixabayApiKey}&q=${word}&image_type=all&per_page=3"
PIXABAY_API_KEY =os.getenv("API_kEY")
# setup redis
redis_client = redis.Redis(
host='redis-18594.c301.ap-south-1-1.ec2.redns.redis-cloud.com',
port=18594,
decode_responses=True,
username="default",
password=os.getenv("REDIS_PASSWORD")
)
print(redis_client)
# Load the model and tokenizer once when the app starts
model = GPT2LMHeadModel.from_pretrained("gpt2").to("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Global variables
predicted_words = []
append_list = []
global_count=0
default_predicted_words = ['i', 'what', 'hello', 'where', 'who', 'how', 'can', 'is', 'are', 'could',
'would', 'may', 'can', 'please', 'will', 'shall', 'did', 'have', 'has',
'had', 'am', 'were', 'was', 'should', 'might', 'must', 'please', 'you',
'he', 'she', 'they', 'it', 'this', 'that', 'these', 'those', 'let',
'we', 'my', 'your', 'his', 'her', 'their', 'our', 'the',
'there', 'come', 'go', 'bring', 'take', 'give', 'help', 'want',
'need', 'eat', 'drink', 'sleep', 'play', 'run', 'walk', 'talk', 'call',
'find', 'make', 'see', 'get', 'know']
def generate_predicted_words(input_text,index =0):
# Load the dataset
dataset_name = "dataset.txt"
dataset = load_dataset(dataset_name)
history_next_text = get_unique_next_words_from_dataset(input_text, dataset)
# Tokenize input
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
# Forward pass through the model
with torch.no_grad():
outputs = model(**inputs, return_dict=True)
logits = outputs.logits
# Get the logits for the last token
last_token_logits = logits[:, -1, :]
probabilities = torch.softmax(last_token_logits, dim=-1)
# Get the top 50 most probable next tokens
top_50_probs, top_50_indices = torch.topk(probabilities, 50)
top_50_tokens = [tokenizer.decode([idx], clean_up_tokenization_spaces=False) for idx in top_50_indices[0]]
words = []
removable_words = [' (', ' a', "'s", ' "', ' -', ' as', " '", "the", " the", "an", " an", "<|endoftext|>", '’d','’m', '’ll','t’s' ,]
for token in top_50_tokens:
if len(token) != 1 and token not in removable_words:
words.append(token.strip().lower())
return history_next_text + words
# fetch from pixabay
def fetch_images_from_pixabay(query: str) -> dict:
# print("yo query ko lagi fetch hudai xa..." , query)
response = requests.get(PIXABAY_URL, params={
"key": PIXABAY_API_KEY,
"q": query,
"image_type": "all",
"per_page": "3"
})
# print("this is from pixabay haita====>" , response.json())
if response.status_code != 200:
return {"error": "Failed to fetch data from Pixabay"}
return response.json()
# fetch images api
@app.route('/api/images', methods=['GET'])
def get_images():
query = request.args.get('query')
correspond_id=request.args.get('id')
print("yo chai id hai" , correspond_id)
print("yo chai query ho hai" , query)
if not query:
return jsonify({"error": "Query parameter is required"}), 400
# Check Redis cache for images
cached_images = redis_client.get('image_cache')
# print("yo ho chaiyeko cached heloooooooooooooooooooooo", cached_images)
if cached_images:
cached_images = json.loads(cached_images) # Convert JSON string to dictionary
# print("cached_img" , cached_images)
for i in cached_images['hits']:
# print("lagalagalag------------>",i.get('query_id'))
# compare the id of the already queried id and id of the query currently
if(i.get('query_id')==correspond_id):
print("Fetching from cache-------------->" , i['previewURL'])
return jsonify(i['previewURL'])
# print("Fetching from Pixabay")
# Fetch from Pixabay if not in cache
# Fetch from Pixabay if not in cache
data = fetch_images_from_pixabay(query)
if "error" in data:
return jsonify(data), 500
for i in data['hits']:
i['query_id']=correspond_id
# print("i bhitra haita",i['query_id'])
# get the total images i.e previously cached images and current images.
if cached_images:
data['hits'] = cached_images['hits'] + data['hits']
data['total'] = cached_images['total'] + data['total']
# Cache the result in Redis for 1hrs
redis_client.setex('image_cache', 86400, json.dumps(data))
print("image from Pixabay-------------->" , data['hits'].pop()['previewURL'])
return jsonify(data['hits'].pop()['previewURL'])
@app.route('/api/display_words', methods=['GET'])
def get_display_words():
try:
count = int(request.args.get('count', global_count)) # Default to 0 if 'count' is not provided
print(type(count))
except ValueError:
return jsonify({"error": "Invalid count value"}), 400
print("Count:", count)
start_index = 9 * count
end_index = start_index + 9
print("Start index:", start_index)
print("End index:", end_index)
if start_index >= len(default_predicted_words): # Reset if out of bounds
count = 0
start_index = 0
end_index = 9
display_words = default_predicted_words[start_index:end_index]
print("Display words:", display_words)
return display_words
# @app.route('/api/scenerio', methods=['POST'])
# # @app.route('/api/select_location', methods=['GET'])
# def scenerio():
# # Get the query parameter from the URL, e.g., /api/select_location?place=home
# place = request.args.get('place')
# if place == "home":
# display_words = default_predicted_words[start_index:end_index]
# return jsonify(display_words)
# @app.route('/api/huu', methods=['GET'])
# def fetch_most_repeated_sentences(): # Ensure the function name is unique
# try:
# with open('most_repeated_sentences.txt', 'r') as file:
# # Read the first 5 lines
# lines = []
# for _ in range(5):
# text = file.readline().strip().split(":")[0]
# print(text)
# lines.append(text)
# # lines = [file.readline().strip().split(':')[0] for _ in range(5)]
# return jsonify(lines), 200 # Return the lines as JSON with a 200 OK status
# except FileNotFoundError:
# return jsonify({"error": "File not found."}), 404 # Handle file not found error
# except Exception as e:
# return jsonify({"error": str(e)}), 500 # Handle other potential errors
@app.route('/api/most_repeated_sentence', methods=['GET'])
def fetch_most_repeated_sentences():
try:
sentences = []
with open('most_repeated_sentences.txt', 'r') as file:
for line in file:
line = line.strip()
if ':' in line: # Check if line contains the separator
try:
sentence, count = line.rsplit(':', 1) # Split from right side
count = int(count.strip())
sentences.append((sentence.strip(), count))
except (ValueError, IndexError):
continue # Skip invalid lines
# Sort sentences by count in descending order
sorted_sentences = sorted(sentences, key=lambda x: x[1], reverse=True)
# Get top 5 sentences only
top_5_sentences = [sentence[0] for sentence in sorted_sentences[:5]]
return jsonify(top_5_sentences)
except FileNotFoundError:
return jsonify({"error": "File not found"}), 404
except Exception as e:
logger.error(f"Error in fetch_most_repeated_sentences: {e}")
return jsonify({"error": "Internal server error"}), 500
@app.route('/api/guu', methods=['POST'])
def predict_words():
global predicted_words, append_list , global_count
try:
data = request.get_json()
print("Received data:", data)
if not isinstance(data, dict):
return jsonify({'error': 'Invalid JSON format'}), 400
input_text = data.get('item', '').strip() # Ensure we are checking the stripped input
# # Handle case when input_text is "1"
# if input_text == "1":
# print("Resetting append_list")
# append_list = [] # Reset the append list
# return jsonify(default_predicted_words[:9]) # Return the default words
# Handle reset request
if input_text == "1":
with open('dataset.txt', 'a') as file:
file.write(' '.join(append_list) + '\n')
append_list = []
global_count = 0
sentence= sentences_name('dataset.txt')
repeated_sentences = get_most_repeated_sentences(sentence)
print("Most repeated sentences:", repeated_sentences)
save_most_repeated_sentences(repeated_sentences, 'most_repeated_sentences.txt')
return jsonify(default_predicted_words[:9])
if not input_text:
return jsonify({'error': 'No input text provided'}), 400
append_list.append(input_text)
print("Current append list:", append_list)
combined_input = ' '.join(append_list)
print("Combined input for prediction:", combined_input)
predicted_words = generate_predicted_words(combined_input)
print("Predicted words:", predicted_words)
return jsonify(predicted_words[:9])
except Exception as e:
print(f"An error occurred: {str(e)}") # Log the error message
return jsonify({'error': str(e)}), 500
application = app
if __name__ == '__main__':
application.run()
|