Spaces:
Sleeping
Sleeping
from flask import Flask, jsonify, request | |
from flask_cors import CORS | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
from history import load_dataset, get_unique_next_words_from_dataset | |
app = Flask(__name__) | |
CORS(app) | |
# Load the model and tokenizer once when the app starts | |
model = GPT2LMHeadModel.from_pretrained("gpt2").to("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
# Global variables | |
predicted_words = [] | |
append_list = [] | |
default_predicted_words = ['i', 'what', 'hello', 'where', 'who', 'how', 'can', 'is', 'are', 'could', | |
'would', 'may', 'do', 'does', 'will', 'shall', 'did', 'have', 'has', | |
'had', 'am', 'were', 'was', 'should', 'might', 'must', 'please', 'you', | |
'he', 'she', 'they', 'it', 'this', 'that', 'these', 'those', 'let', | |
'we', 'my', 'your', 'his', 'her', 'their', 'our', 'the', | |
'there', 'come', 'go', 'bring', 'take', 'give', 'help', 'want', | |
'need', 'eat', 'drink', 'sleep', 'play', 'run', 'walk', 'talk', 'call', | |
'find', 'make', 'see', 'get', 'know'] | |
starting_words_for_home = [ | |
"i", "let’s", "can", "the", "please", "it’s", "this", "i’m", "i’ll", | |
"you", "we", "my", "can’t", "shall", "would", "will", "do", | |
"should", "they", "let" | |
] | |
def generate_predicted_words(input_text,dataset_name= 'dataset.txt'): | |
# Load the dataset | |
# dataset_name = "dataset.txt" | |
dataset = load_dataset(dataset_name) | |
history_next_text = get_unique_next_words_from_dataset(input_text, dataset) | |
# Tokenize input | |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) | |
# Forward pass through the model | |
with torch.no_grad(): | |
outputs = model(**inputs, return_dict=True) | |
logits = outputs.logits | |
# Get the logits for the last token | |
last_token_logits = logits[:, -1, :] | |
probabilities = torch.softmax(last_token_logits, dim=-1) | |
# Get the top 50 most probable next tokens | |
top_50_probs, top_50_indices = torch.topk(probabilities, 50) | |
top_50_tokens = [tokenizer.decode([idx], clean_up_tokenization_spaces=False) for idx in top_50_indices[0]] | |
words = [] | |
removable_words = [' (', ' a', "'s", ' "', ' -', ' as', " '", "the", " the", "an", " an", "<|endoftext|>, "] | |
for token in top_50_tokens: | |
if len(token) != 1 and token not in removable_words: | |
words.append(token.strip().lower()) | |
return history_next_text + words | |
def get_display_words(): | |
count = int(request.args.get('count', 0)) | |
start_index = 9 * count | |
end_index = start_index + 9 | |
if start_index >= len(predicted_words): # Reset if out of bounds | |
count = 0 | |
start_index = 0 | |
end_index = 9 | |
display_words = default_predicted_words[start_index:end_index] | |
return jsonify(display_words) | |
# # @app.route('/api/select_location', methods=['GET']) | |
def scenerio(): | |
# Get the query parameter from the URL, e.g., /api/select_location?place=home | |
place = request.args.get('place') | |
if place == "home": | |
dataset = "C:\Users\bhand\OneDrive\Desktop\hackthon_ktm\scenerio\home_scenerio.txt" | |
# predicted_words = generate_predicted_words(input_text,dataset_name= 'dataset.txt') | |
return jsonify(starting_words_for_home[:9]) | |
elif place =='school': | |
dataset = 'C:\Users\bhand\OneDrive\Desktop\hackthon_ktm\scenerio\home_scenerio.txt' | |
return jsonify(starting_words_for_school[:9]) | |
# display_words = default_predicted_words[start_index:end_index] | |
# return jsonify(display_words) | |
def fetch_most_repeated_sentences(): # Ensure the function name is unique | |
try: | |
with open('most_repeated_sentences.txt', 'r') as file: | |
# Read the first 5 lines | |
lines = [] | |
for _ in range(5): | |
text = file.readline().strip().split(":")[0] | |
print(text) | |
lines.append(text) | |
# lines = [file.readline().strip().split(':')[0] for _ in range(5)] | |
return jsonify(lines), 200 # Return the lines as JSON with a 200 OK status | |
except FileNotFoundError: | |
return jsonify({"error": "File not found."}), 404 # Handle file not found error | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 # Handle other potential errors | |
def predict_words(): | |
global predicted_words, append_list | |
try: | |
data = request.get_json() | |
print("Received data:", data) | |
if not isinstance(data, dict): | |
return jsonify({'error': 'Invalid JSON format'}), 400 | |
input_text = data.get('item', '').strip() # Ensure we are checking the stripped input | |
# Handle case when input_text is "1" | |
if input_text == "1": | |
print("Resetting append_list") | |
append_list = [] # Reset the append list | |
return jsonify(default_predicted_words[:9]) # Return the default words | |
if not input_text: | |
return jsonify({'error': 'No input text provided'}), 400 | |
append_list.append(input_text) | |
print("Current append list:", append_list) | |
combined_input = ' '.join(append_list) | |
print("Combined input for prediction:", combined_input) | |
predicted_words = generate_predicted_words(combined_input) | |
print("Predicted words:", predicted_words) | |
return jsonify(predicted_words[:9]) | |
except Exception as e: | |
print(f"An error occurred: {str(e)}") # Log the error message | |
return jsonify({'error': str(e)}), 500 | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=5000, debug=True) | |