from flask import Flask, jsonify, request from flask_cors import CORS import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer from history import load_dataset, get_unique_next_words_from_dataset app = Flask(__name__) CORS(app) # Load the model and tokenizer once when the app starts model = GPT2LMHeadModel.from_pretrained("gpt2").to("cuda" if torch.cuda.is_available() else "cpu") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Global variables predicted_words = [] append_list = [] default_predicted_words = [ "I", "What", "Hello", "Where", "Who", "How", "Can", "Is", "Are", "Could", "Would", "May", "Do", "Does", "Will", "Shall", "Did", "Have", "Has", "Had", "Am", "Were", "Was", "Should", "Might", "Must", "Please", "You", "He", "She", "They", "It", "This", "That", "These", "Those", "Let", "We", "My", "Your", "His", "Her", "Their", "Our", "The", "There", "Come", "Go", "Bring", "Take", "Give", "Help", "Want", "Need", "Eat", "Drink", "Sleep", "Play", "Run", "Walk", "Talk", "Call", "Find", "Make", "See", "Get", "Know" ] def generate_predicted_words(input_text): # Load the dataset dataset_name = ['C:\Users\bhand\OneDrive\Desktop\hackthon_ktm\scenerio\home_scenerio.txt', 'C:\Users\bhand\OneDrive\Desktop\hackthon_ktm\scenerio\school_school.txt', "dataset.txt"] dataset_name = "dataset.txt" dataset = load_dataset(dataset_name) history_next_text = get_unique_next_words_from_dataset(input_text, dataset) # Tokenize input inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # Forward pass through the model with torch.no_grad(): outputs = model(**inputs, return_dict=True) logits = outputs.logits # Get the logits for the last token last_token_logits = logits[:, -1, :] probabilities = torch.softmax(last_token_logits, dim=-1) # Get the top 50 most probable next tokens top_50_probs, top_50_indices = torch.topk(probabilities, 50) top_50_tokens = [tokenizer.decode([idx], clean_up_tokenization_spaces=False) for idx in top_50_indices[0]] words = [] removable_words = [' (', ' a', "'s", ' "', ' -', ' as', " '", "the", " the", "an", " an", "<|endoftext|>, "] for token in top_50_tokens: if len(token) != 1 and token not in removable_words: words.append(token) return history_next_text + words @app.route('/api/display_words', methods=['GET']) def get_display_words(): count = int(request.args.get('count', 0)) label = "home" if label == "home": index = 0 start_index = 9 * count end_index = start_index + 9 if start_index >= len(predicted_words): # Reset if out of bounds count = 0 start_index = 0 end_index = 9 display_words = default_predicted_words[start_index:end_index] return jsonify(display_words) @app.route('/api/guu', methods=['POST']) def predict_words(): global predicted_words, append_list try: data = request.get_json() if not isinstance(data, dict): return jsonify({'error': 'Invalid JSON format'}), 400 flag = data.get('flag', 0) print("This is ", flag) if flag == 1: print("Empty") append_list = [] input_text = data.get('item', '') if not input_text: return jsonify({'error': 'No input text provided'}), 400 append_list.append(input_text) combined_input = ' '.join(append_list) predicted_words = generate_predicted_words(combined_input) return jsonify(predicted_words[:9]) except Exception as e: return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)