File size: 9,321 Bytes
255495b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python

import os
import pathlib
import tempfile

import gradio as gr
import torch
import torchaudio
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from fairseq2.data import Collater, SequenceData, VocabularyInfo
from fairseq2.data.audio import (
    AudioDecoder,
    WaveformToFbankConverter,
    WaveformToFbankOutput,
)

from seamless_communication.inference import SequenceGeneratorOptions
from fairseq2.generation import NGramRepeatBlockProcessor
from fairseq2.memory import MemoryBlock
from fairseq2.typing import DataType, Device
from huggingface_hub import snapshot_download
from seamless_communication.inference import BatchedSpeechOutput, Translator, SequenceGeneratorOptions
from seamless_communication.models.generator.loader import load_pretssel_vocoder_model
from seamless_communication.models.unity import (
    UnitTokenizer,
    load_gcmvn_stats,
    load_unity_text_tokenizer,
    load_unity_unit_tokenizer,
)
from torch.nn import Module
from seamless_communication.cli.expressivity.evaluate.pretssel_inference_helper import PretsselGenerator

from utils import LANGUAGE_CODE_TO_NAME

DESCRIPTION = """\
# Seamless Expressive


[SeamlessExpressive](https://github.com/facebookresearch/seamless_communication) is a speech-to-speech translation model that captures certain underexplored aspects of prosody such as speech rate and pauses, while preserving the style of one's voice and high content translation quality.
"""

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()

CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
if not CHECKPOINTS_PATH.exists():
    snapshot_download(repo_id="facebook/seamless-expressive", repo_type="model", local_dir=CHECKPOINTS_PATH)
    snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)

# Ensure that we do not have any other environment resolvers and always return
# "demo" for demo purposes.
asset_store.env_resolvers.clear()
asset_store.env_resolvers.append(lambda: "demo")

# Construct an `InProcAssetMetadataProvider` with environment-specific metadata
# that just overrides the regular metadata for "demo" environment. Note the "@demo" suffix.
demo_metadata = [
    {
        "name": "seamless_expressivity@demo",
        "checkpoint": f"file://{CHECKPOINTS_PATH}/m2m_expressive_unity.pt",
        "char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
    },
    {
        "name": "vocoder_pretssel@demo",
        "checkpoint": f"file://{CHECKPOINTS_PATH}/pretssel_melhifigan_wm-final.pt",
    },
    {
        "name": "seamlessM4T_v2_large@demo",
        "checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
        "char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
    },
]

asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))

LANGUAGE_NAME_TO_CODE = {v: k for k, v in LANGUAGE_CODE_TO_NAME.items()}


if torch.cuda.is_available():
    device = torch.device("cuda:0")
    dtype = torch.float16
else:
    device = torch.device("cpu")
    dtype = torch.float32


MODEL_NAME = "seamless_expressivity"
VOCODER_NAME = "vocoder_pretssel"

# used for ASR for toxicity
m4t_translator = Translator(
    model_name_or_card="seamlessM4T_v2_large",
    vocoder_name_or_card=None,
    device=device,
    dtype=dtype,
)
unit_tokenizer = load_unity_unit_tokenizer(MODEL_NAME)

_gcmvn_mean, _gcmvn_std = load_gcmvn_stats(VOCODER_NAME)
gcmvn_mean = torch.tensor(_gcmvn_mean, device=device, dtype=dtype)
gcmvn_std = torch.tensor(_gcmvn_std, device=device, dtype=dtype)

translator = Translator(
    MODEL_NAME,
    vocoder_name_or_card=None,
    device=device,
    dtype=dtype,
    apply_mintox=False,
)

text_generation_opts = SequenceGeneratorOptions(
    beam_size=5,
    unk_penalty=torch.inf,
    soft_max_seq_len=(0, 200),
    step_processor=NGramRepeatBlockProcessor(
        ngram_size=10,
    ),
)
m4t_text_generation_opts = SequenceGeneratorOptions(
    beam_size=5,
    unk_penalty=torch.inf,
    soft_max_seq_len=(1, 200),
    step_processor=NGramRepeatBlockProcessor(
        ngram_size=10,
    ),
)

pretssel_generator = PretsselGenerator(
    VOCODER_NAME,
    vocab_info=unit_tokenizer.vocab_info,
    device=device,
    dtype=dtype,
)

decode_audio = AudioDecoder(dtype=torch.float32, device=device)

convert_to_fbank = WaveformToFbankConverter(
    num_mel_bins=80,
    waveform_scale=2**15,
    channel_last=True,
    standardize=False,
    device=device,
    dtype=dtype,
)


def normalize_fbank(data: WaveformToFbankOutput) -> WaveformToFbankOutput:
    fbank = data["fbank"]
    std, mean = torch.std_mean(fbank, dim=0)
    data["fbank"] = fbank.subtract(mean).divide(std)
    data["gcmvn_fbank"] = fbank.subtract(gcmvn_mean).divide(gcmvn_std)
    return data


collate = Collater(pad_value=0, pad_to_multiple=1)


AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 10  # in seconds


def remove_prosody_tokens_from_text(text):
    # filter out prosody tokens, there is only emphasis '*', and pause '='
    text = text.replace("*", "").replace("=", "")
    text = " ".join(text.split())
    return text


def preprocess_audio(input_audio_path: str) -> None:
    arr, org_sr = torchaudio.load(input_audio_path)
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
    if new_arr.shape[1] > max_length:
        new_arr = new_arr[:, :max_length]
        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
    torchaudio.save(input_audio_path, new_arr, sample_rate=AUDIO_SAMPLE_RATE)


def run(
    input_audio_path: str,
    source_language: str,
    target_language: str,
) -> tuple[str, str]:
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language]

    preprocess_audio(input_audio_path)

    with pathlib.Path(input_audio_path).open("rb") as fb:
        block = MemoryBlock(fb.read())
        example = decode_audio(block)

    example = convert_to_fbank(example)
    example = normalize_fbank(example)
    example = collate(example)

    # get transcription for mintox
    source_sentences, _ = m4t_translator.predict(
        input=example["fbank"],
        task_str="S2TT",  # get source text
        tgt_lang=source_language_code,
        text_generation_opts=m4t_text_generation_opts,
    )
    source_text = str(source_sentences[0])

    prosody_encoder_input = example["gcmvn_fbank"]
    text_output, unit_output = translator.predict(
        example["fbank"],
        "S2ST",
        tgt_lang=target_language_code,
        src_lang=source_language_code,
        text_generation_opts=text_generation_opts,
        unit_generation_ngram_filtering=False,
        duration_factor=1.0,
        prosody_encoder_input=prosody_encoder_input,
        src_text=source_text,  # for mintox check
    )
    speech_output = pretssel_generator.predict(
        unit_output.units,
        tgt_lang=target_language_code,
        prosody_encoder_input=prosody_encoder_input,
    )

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
        torchaudio.save(
            f.name,
            speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
            sample_rate=speech_output.sample_rate,
        )

    text_out = remove_prosody_tokens_from_text(str(text_output[0]))

    return f.name, text_out


TARGET_LANGUAGE_NAMES = [
    "English",
    "French",
    "German",
    "Spanish",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                source_language = gr.Dropdown(
                    label="Source language",
                    choices=TARGET_LANGUAGE_NAMES,
                    value="English",
                )
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=TARGET_LANGUAGE_NAMES,
                    value="French",
                )
            btn = gr.Button()
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(label="Translated speech")
                output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/Excited-Es.wav", "English", "Spanish"],
            ["assets/FastTalking-En.wav", "French", "English"],
            ["assets/Sad-Es.wav", "English", "Spanish"],
        ],
        inputs=[input_audio, source_language, target_language],
        outputs=[output_audio, output_text],
        fn=run,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run,
        inputs=[input_audio, source_language, target_language],
        outputs=[output_audio, output_text],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch()