Spaces:
Build error
Build error
# https://huggingface.co/spaces/barser65/assessment3 | |
def converti(path): | |
import pip | |
def install(package): | |
if hasattr(pip, 'main'): | |
pip.main(['install', package]) | |
else: | |
pip._internal.main(['install', package]) | |
install('git+https://github.com/huggingface/transformers.git') | |
install('datasets sentencepiece') | |
install('PyPDF2') | |
install('pdfminer.six') | |
install('pdfplumber') | |
install('poppler-utils') | |
install('tesseract-ocr') | |
install('libtesseract-dev') | |
# To read the PDF | |
import PyPDF2 | |
# To analyze the PDF layout and extract text | |
from pdfminer.high_level import extract_pages, extract_text | |
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure | |
# To extract text from tables in PDF | |
import pdfplumber | |
# To remove the additional created files | |
import os | |
# Create a function to extract text | |
def text_extraction(element): | |
# Extracting the text from the in-line text element | |
line_text = element.get_text() | |
# Find the formats of the text | |
# Initialize the list with all the formats that appeared in the line of text | |
line_formats = [] | |
for text_line in element: | |
if isinstance(text_line, LTTextContainer): | |
# Iterating through each character in the line of text | |
for character in text_line: | |
if isinstance(character, LTChar): | |
# Append the font name of the character | |
line_formats.append(character.fontname) | |
# Append the font size of the character | |
line_formats.append(character.size) | |
# Find the unique font sizes and names in the line | |
format_per_line = list(set(line_formats)) | |
# Return a tuple with the text in each line along with its format | |
return (line_text, format_per_line) | |
def read_pdf(pdf_path): | |
# create a PDF file object | |
pdfFileObj = open(pdf_path, 'rb') | |
# create a PDF reader object | |
pdfReaded = PyPDF2.PdfReader(pdfFileObj) | |
# Create the dictionary to extract text from each image | |
text_per_page = {} | |
# We extract the pages from the PDF | |
for pagenum, page in enumerate(extract_pages(pdf_path)): | |
print("Elaborating Page_" +str(pagenum)) | |
# Initialize the variables needed for the text extraction from the page | |
pageObj = pdfReaded.pages[pagenum] | |
page_text = [] | |
line_format = [] | |
text_from_images = [] | |
text_from_tables = [] | |
page_content = [] | |
# Initialize the number of the examined tables | |
table_num = 0 | |
first_element= True | |
table_extraction_flag= False | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
page_tables = pdf.pages[pagenum] | |
# Find the number of tables on the page | |
tables = page_tables.find_tables() | |
# Find all the elements | |
page_elements = [(element.y1, element) for element in page._objs] | |
# Sort all the elements as they appear in the page | |
page_elements.sort(key=lambda a: a[0], reverse=True) | |
# Find the elements that composed a page | |
for i,component in enumerate(page_elements): | |
# Extract the position of the top side of the element in the PDF | |
pos= component[0] | |
# Extract the element of the page layout | |
element = component[1] | |
# Check if the element is a text element | |
if isinstance(element, LTTextContainer): | |
# Check if the text appeared in a table | |
if table_extraction_flag == False: | |
# Use the function to extract the text and format for each text element | |
(line_text, format_per_line) = text_extraction(element) | |
# Append the text of each line to the page text | |
page_text.append(line_text) | |
# Append the format for each line containing text | |
line_format.append(format_per_line) | |
page_content.append(line_text) | |
else: | |
# Omit the text that appeared in a table | |
pass | |
# Create the key of the dictionary | |
dctkey = 'Page_'+str(pagenum) | |
# Add the list of list as the value of the page key | |
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content] | |
# Closing the pdf file object | |
pdfFileObj.close() | |
return text_per_page | |
pdf_path = path | |
text_per_page = read_pdf(pdf_path) | |
abstr = '' | |
while len(abstr) == 0: | |
for par in range(len(text_per_page)): | |
for x in text_per_page['Page_'+str(par)]: | |
mystring = ' '.join(map(str,x)) | |
if mystring.find('Abstract\n') > 0: | |
abstr0 = mystring[mystring.find('Abstract\n')+10:] | |
abstr = abstr0[:abstr0.find('1\n')] | |
from transformers import pipeline | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
summary = summarizer(abstr, max_length=56) | |
summary_text = summary[0]['summary_text'] | |
import torch | |
import soundfile as sf | |
from IPython.display import Audio | |
from datasets import load_dataset | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
inputs = processor(text=summary_text, return_tensors="pt") | |
from datasets import load_dataset | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) | |
from transformers import SpeechT5HifiGan | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
with torch.no_grad(): | |
speech = vocoder(spectrogram) | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
return Audio(speech, rate=16000) | |
import gradio as gr | |
iface = gr.Interface(fn=converti, inputs="file", outputs="audio") | |
iface.launch() |