barser65 commited on
Commit
8f0f72b
·
1 Parent(s): 4f526ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -5
app.py CHANGED
@@ -139,12 +139,33 @@ def converti(path):
139
  summary = summarizer(abstr, max_length=56)
140
  summary_text = summary[0]['summary_text']
141
 
142
- return summary_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
  import gradio as gr
145
 
146
- #def greet(name):
147
- # return "Hello " + name + "!!"
148
- # return
149
- iface = gr.Interface(fn=converti, inputs=gr.Textbox(label="Input PDF name from your drive"), outputs="text")
150
  iface.launch()
 
139
  summary = summarizer(abstr, max_length=56)
140
  summary_text = summary[0]['summary_text']
141
 
142
+ import torch
143
+ import soundfile as sf
144
+ from IPython.display import Audio
145
+ from datasets import load_dataset
146
+
147
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
148
+
149
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
150
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
151
+
152
+ inputs = processor(text=summary_text, return_tensors="pt")
153
+
154
+ from datasets import load_dataset
155
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
156
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
157
+
158
+ spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
159
+
160
+ from transformers import SpeechT5HifiGan
161
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
162
+ with torch.no_grad():
163
+ speech = vocoder(spectrogram)
164
+
165
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
166
+ return Audio(speech, rate=16000)
167
 
168
  import gradio as gr
169
 
170
+ iface = gr.Interface(fn=converti, inputs=gr.Textbox(label="Input PDF name from your drive"), outputs="audio")
 
 
 
171
  iface.launch()