# https://huggingface.co/spaces/barser65/assessment3 def converti(path): import pip def install(package): if hasattr(pip, 'main'): pip.main(['install', package]) else: pip._internal.main(['install', package]) install('git+https://github.com/huggingface/transformers.git') install('datasets sentencepiece') install('PyPDF2') install('pdfminer.six') install('pdfplumber') install('poppler-utils') install('tesseract-ocr') install('libtesseract-dev') # To read the PDF import PyPDF2 # To analyze the PDF layout and extract text from pdfminer.high_level import extract_pages, extract_text from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure # To extract text from tables in PDF import pdfplumber # To remove the additional created files import os # Create a function to extract text def text_extraction(element): # Extracting the text from the in-line text element line_text = element.get_text() # Find the formats of the text # Initialize the list with all the formats that appeared in the line of text line_formats = [] for text_line in element: if isinstance(text_line, LTTextContainer): # Iterating through each character in the line of text for character in text_line: if isinstance(character, LTChar): # Append the font name of the character line_formats.append(character.fontname) # Append the font size of the character line_formats.append(character.size) # Find the unique font sizes and names in the line format_per_line = list(set(line_formats)) # Return a tuple with the text in each line along with its format return (line_text, format_per_line) def read_pdf(pdf_path): # create a PDF file object pdfFileObj = open(pdf_path, 'rb') # create a PDF reader object pdfReaded = PyPDF2.PdfReader(pdfFileObj) # Create the dictionary to extract text from each image text_per_page = {} # We extract the pages from the PDF for pagenum, page in enumerate(extract_pages(pdf_path)): print("Elaborating Page_" +str(pagenum)) # Initialize the variables needed for the text extraction from the page pageObj = pdfReaded.pages[pagenum] page_text = [] line_format = [] text_from_images = [] text_from_tables = [] page_content = [] # Initialize the number of the examined tables table_num = 0 first_element= True table_extraction_flag= False # Open the pdf file pdf = pdfplumber.open(pdf_path) # Find the examined page page_tables = pdf.pages[pagenum] # Find the number of tables on the page tables = page_tables.find_tables() # Find all the elements page_elements = [(element.y1, element) for element in page._objs] # Sort all the elements as they appear in the page page_elements.sort(key=lambda a: a[0], reverse=True) # Find the elements that composed a page for i,component in enumerate(page_elements): # Extract the position of the top side of the element in the PDF pos= component[0] # Extract the element of the page layout element = component[1] # Check if the element is a text element if isinstance(element, LTTextContainer): # Check if the text appeared in a table if table_extraction_flag == False: # Use the function to extract the text and format for each text element (line_text, format_per_line) = text_extraction(element) # Append the text of each line to the page text page_text.append(line_text) # Append the format for each line containing text line_format.append(format_per_line) page_content.append(line_text) else: # Omit the text that appeared in a table pass # Create the key of the dictionary dctkey = 'Page_'+str(pagenum) # Add the list of list as the value of the page key text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content] # Closing the pdf file object pdfFileObj.close() return text_per_page pdf_path = path text_per_page = read_pdf(pdf_path) abstr = '' while len(abstr) == 0: for par in range(len(text_per_page)): for x in text_per_page['Page_'+str(par)]: mystring = ' '.join(map(str,x)) if mystring.find('Abstract\n') > 0: abstr0 = mystring[mystring.find('Abstract\n')+10:] abstr = abstr0[:abstr0.find('1\n')] from transformers import pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(abstr, max_length=56) summary_text = summary[0]['summary_text'] import torch import soundfile as sf from IPython.display import Audio from datasets import load_dataset from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") inputs = processor(text=summary_text, return_tensors="pt") from datasets import load_dataset embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) from transformers import SpeechT5HifiGan vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") with torch.no_grad(): speech = vocoder(spectrogram) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) return Audio(speech, rate=16000) import gradio as gr iface = gr.Interface(fn=converti, inputs="file", outputs="audio") iface.launch()