Spaces:
Running
Running
File size: 3,372 Bytes
8537019 aa4f694 8537019 3e68ccf aa4f694 e55d16a 3e68ccf e55d16a 3e68ccf e55d16a 3e68ccf aa4f694 3e68ccf e55d16a 3e68ccf e55d16a 3e68ccf e55d16a 3e68ccf e55d16a 3e68ccf e55d16a 7b01107 3e68ccf e55d16a 3e68ccf 8537019 c6643c7 8537019 aa4f694 8537019 aa4f694 8537019 aa4f694 8537019 aa4f694 8537019 3e68ccf 8537019 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import json
import logging
import time
import requests
from langchain.llms import Clarifai
from global_config import GlobalConfig
logging.basicConfig(
level=GlobalConfig.LOG_LEVEL,
format='%(asctime)s - %(message)s',
)
llm = None
def get_llm(use_gpt: bool) -> Clarifai:
"""
Get a large language model.
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
"""
if use_gpt:
_ = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
verbose=True,
# temperature=0.1,
)
else:
_ = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID,
app_id=GlobalConfig.CLARIFAI_APP_ID,
model_id=GlobalConfig.CLARIFAI_MODEL_ID,
verbose=True,
# temperature=0.1,
)
# print(llm)
return _
def generate_slides_content(topic: str) -> str:
"""
Generate the outline/contents of slides for a presentation on a given topic.
:param topic: Topic/subject matter/idea on which slides are to be generated
:return: The content in JSON format
"""
# global prompt
global llm
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
template_txt = in_file.read().strip()
template_txt = template_txt.replace('<REPLACE_PLACEHOLDER>', topic)
if llm is None:
llm = get_llm(use_gpt=True)
print(llm)
slides_content = llm(template_txt, verbose=True)
return slides_content
def get_ai_image(text: str) -> str:
"""
Get a Stable Diffusion-generated image based on a given text.
:param text: The input text
:return: The Base 64-encoded image
"""
url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs'''
headers = {
"Content-Type": "application/json",
"Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}'
}
data = {
"inputs": [
{
"data": {
"text": {
"raw": text
}
}
}
]
}
# print('*** AI image generator...')
# print(url)
start = time.time()
response = requests.post(
url=url,
headers=headers,
data=json.dumps(data)
)
stop = time.time()
# print('Response:', response, response.status_code)
logging.debug('Image generation took', stop - start, 'seconds')
img_data = ''
if response.ok:
# print('*** Clarifai SDXL request: Response OK')
json_data = json.loads(response.text)
img_data = json_data['outputs'][0]['data']['image']['base64']
else:
logging.error('*** Image generation failed:', response.text)
return img_data
if __name__ == '__main__':
# results = get_related_websites('5G AI WiFi 6')
#
# for a_result in results.results:
# print(a_result.title, a_result.url, a_result.extract)
# get_ai_image('A talk on AI, covering pros and cons')
pass
|