Spaces:
Running
Running
File size: 5,995 Bytes
8537019 c6643c7 8537019 3e68ccf f845b93 c6643c7 3e68ccf f845b93 3e68ccf f845b93 3e68ccf f845b93 3e68ccf f845b93 3e68ccf f845b93 3e68ccf f845b93 3e68ccf f845b93 3e68ccf c6643c7 f845b93 c8feae1 c6643c7 8537019 c6643c7 8537019 3e68ccf 8537019 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import json
import time
import metaphor_python as metaphor
import requests
from langchain import PromptTemplate
from langchain.llms import Clarifai
from global_config import GlobalConfig
prompt = None
llm_contents = None
llm_json = None
metaphor_client = None
def get_llm(use_gpt: bool) -> Clarifai:
"""
Get a large language model.
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
"""
if use_gpt:
llm = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
verbose=True,
# temperature=0.1,
)
else:
llm = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID,
app_id=GlobalConfig.CLARIFAI_APP_ID,
model_id=GlobalConfig.CLARIFAI_MODEL_ID,
verbose=True,
# temperature=0.1,
)
print(llm)
return llm
def generate_slides_content(topic: str) -> str:
"""
Generate the outline/contents of slides for a presentation on a given topic.
:param topic: Topic/subject matter/idea on which slides are to be generated
:return: The content
"""
global prompt
global llm_contents
if prompt is None:
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
template_txt = in_file.read().strip()
prompt = PromptTemplate.from_template(template_txt)
formatted_prompt = prompt.format(topic=topic)
print(f'formatted_prompt:\n{formatted_prompt}')
if llm_contents is None:
llm_contents = get_llm(use_gpt=False)
slides_content = llm_contents(formatted_prompt, verbose=True)
return slides_content
def text_to_json(content: str) -> str:
"""
Convert input text into structured JSON representation.
:param content: Input text
:return: JSON string
"""
global llm_json
content = content.replace('```', '')
# f-string is not used in order to prevent interpreting the brackets
with open(GlobalConfig.JSON_TEMPLATE_FILE, 'r') as in_file:
text = in_file.read()
# Insert the actual text contents
text = text.replace('<REPLACE_PLACEHOLDER>', content)
text = text.strip()
print(text)
if llm_json is None:
llm_json = get_llm(use_gpt=True)
output = llm_json(text, verbose=True)
output = output.strip()
first_index = max(0, output.find('{'))
last_index = min(output.rfind('}'), len(output))
output = output[first_index: last_index + 1]
return output
def text_to_yaml(content: str) -> str:
"""
Convert input text into structured YAML representation.
:param content: Input text
:return: JSON string
"""
global llm_json
content = content.replace('```', '')
# f-string is not used in order to prevent interpreting the brackets
text = '''
You are a helpful AI assistant.
Convert the given slide deck text into structured YAML output.
Also, generate and add an engaging presentation title.
The output should be only correct and valid YAML having the following structure:
title: "..."
slides:
- heading: "..."
bullet_points:
- "..."
- "..."
- heading: "..."
bullet_points:
- "..."
- "...": # This line ends with a colon because it has a sub-block
- "..."
- "..."
Text:
'''
text += content
text += '''
Output:
```yaml
'''
text = text.strip()
print(text)
if llm_json is None:
llm_json = get_llm(use_gpt=True)
output = llm_json(text, verbose=True)
output = output.strip()
# first_index = max(0, output.find('{'))
# last_index = min(output.rfind('}'), len(output))
# output = output[first_index: last_index + 1]
return output
def get_related_websites(query: str) -> metaphor.api.SearchResponse:
"""
Fetch Web search results for a given query.
:param query: The query text
:return: The search results object
"""
global metaphor_client
if not metaphor_client:
metaphor_client = metaphor.Metaphor(api_key=GlobalConfig.METAPHOR_API_KEY)
return metaphor_client.search(query, use_autoprompt=True, num_results=5)
def get_ai_image(text: str) -> str:
"""
Get a Stable Diffusion-generated image based on a given text.
:param text: The input text
:return: The Base 64-encoded image
"""
url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs'''
headers = {
"Content-Type": "application/json",
"Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}'
}
data = {
"inputs": [
{
"data": {
"text": {
"raw": text
}
}
}
]
}
print('*** AI image generator...')
print(url)
start = time.time()
response = requests.post(
url=url,
headers=headers,
data=json.dumps(data)
)
stop = time.time()
print('Response:', response, response.status_code)
print('Image generation took', stop - start, 'seconds')
img_data = ''
if response.ok:
print('*** Clarifai SDXL request: Response OK')
json_data = json.loads(response.text)
img_data = json_data['outputs'][0]['data']['image']['base64']
else:
print('Image generation failed:', response.text)
return img_data
if __name__ == '__main__':
# results = get_related_websites('5G AI WiFi 6')
#
# for a_result in results.results:
# print(a_result.title, a_result.url, a_result.extract)
# get_ai_image('A talk on AI, covering pros and cons')
pass
|