Spaces:
Running
Running
import logging | |
import pathlib | |
import re | |
import tempfile | |
from typing import List, Tuple | |
import json5 | |
import pptx | |
from global_config import GlobalConfig | |
PATTERN = re.compile(r"^slide[ ]+\d+:", re.IGNORECASE) | |
SAMPLE_JSON_FOR_PPTX = ''' | |
{ | |
"title": "Understanding AI", | |
"slides": [ | |
{ | |
"heading": "Introduction", | |
"bullet_points": [ | |
"Brief overview of AI", | |
[ | |
"Importance of understanding AI" | |
] | |
] | |
} | |
] | |
} | |
''' | |
logger = logging.getLogger(__name__) | |
def remove_slide_number_from_heading(header: str) -> str: | |
""" | |
Remove the slide number from a given slide header. | |
:param header: The header of a slide. | |
""" | |
if PATTERN.match(header): | |
idx = header.find(':') | |
header = header[idx + 1:] | |
return header | |
def generate_powerpoint_presentation( | |
structured_data: str, | |
slides_template: str, | |
output_file_path: pathlib.Path | |
) -> List: | |
""" | |
Create and save a PowerPoint presentation file containing the content in JSON format. | |
:param structured_data: The presentation contents as "JSON" (may contain trailing commas). | |
:param slides_template: The PPTX template to use. | |
:param output_file_path: The path of the PPTX file to save as. | |
:return A list of presentation title and slides headers. | |
""" | |
# The structured "JSON" might contain trailing commas, so using json5 | |
parsed_data = json5.loads(structured_data) | |
logger.debug( | |
'*** Using PPTX template: %s', | |
GlobalConfig.PPTX_TEMPLATE_FILES[slides_template]['file'] | |
) | |
presentation = pptx.Presentation(GlobalConfig.PPTX_TEMPLATE_FILES[slides_template]['file']) | |
# The title slide | |
title_slide_layout = presentation.slide_layouts[0] | |
slide = presentation.slides.add_slide(title_slide_layout) | |
title = slide.shapes.title | |
subtitle = slide.placeholders[1] | |
title.text = parsed_data['title'] | |
logger.info( | |
'PPT title: %s | #slides: %d', | |
title.text, len(parsed_data['slides']) | |
) | |
subtitle.text = 'by Myself and SlideDeck AI :)' | |
all_headers = [title.text, ] | |
# background = slide.background | |
# background.fill.solid() | |
# background.fill.fore_color.rgb = RGBColor.from_string('C0C0C0') # Silver | |
# title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 128) # Navy blue | |
# Add contents in a loop | |
for a_slide in parsed_data['slides']: | |
bullet_slide_layout = presentation.slide_layouts[1] | |
slide = presentation.slides.add_slide(bullet_slide_layout) | |
shapes = slide.shapes | |
title_shape = shapes.title | |
body_shape = shapes.placeholders[1] | |
title_shape.text = remove_slide_number_from_heading(a_slide['heading']) | |
all_headers.append(title_shape.text) | |
text_frame = body_shape.text_frame | |
# The bullet_points may contain a nested hierarchy of JSON arrays | |
# In some scenarios, it may contain objects (dictionaries) because the LLM generated so | |
# ^ The second scenario is not covered | |
flat_items_list = get_flat_list_of_contents(a_slide['bullet_points'], level=0) | |
for an_item in flat_items_list: | |
paragraph = text_frame.add_paragraph() | |
paragraph.text = an_item[0] | |
paragraph.level = an_item[1] | |
# The thank-you slide | |
last_slide_layout = presentation.slide_layouts[0] | |
slide = presentation.slides.add_slide(last_slide_layout) | |
title = slide.shapes.title | |
title.text = 'Thank you!' | |
presentation.save(output_file_path) | |
return all_headers | |
def get_flat_list_of_contents(items: list, level: int) -> List[Tuple]: | |
""" | |
Flatten a (hierarchical) list of bullet points to a single list containing each item and | |
its level. | |
:param items: A bullet point (string or list). | |
:param level: The current level of hierarchy. | |
:return: A list of (bullet item text, hierarchical level) tuples. | |
""" | |
flat_list = [] | |
for item in items: | |
if isinstance(item, str): | |
flat_list.append((item, level)) | |
elif isinstance(item, list): | |
flat_list = flat_list + get_flat_list_of_contents(item, level + 1) | |
return flat_list | |
if __name__ == '__main__': | |
# bullets = [ | |
# 'Description', | |
# 'Types', | |
# [ | |
# 'Type A', | |
# 'Type B' | |
# ], | |
# 'Grand parent', | |
# [ | |
# 'Parent', | |
# [ | |
# 'Grand child' | |
# ] | |
# ] | |
# ] | |
# output = get_flat_list_of_contents(bullets, level=0) | |
# for x in output: | |
# print(x) | |
json_data = ''' | |
{ | |
"title": "Understanding AI", | |
"slides": [ | |
{ | |
"heading": "Introduction", | |
"bullet_points": [ | |
"Brief overview of AI", | |
[ | |
"Importance of understanding AI" | |
] | |
] | |
}, | |
{ | |
"heading": "What is AI?", | |
"bullet_points": [ | |
"Definition of AI", | |
[ | |
"Types of AI", | |
[ | |
"Narrow or weak AI", | |
"General or strong AI" | |
] | |
], | |
"Differences between AI and machine learning" | |
] | |
}, | |
{ | |
"heading": "How AI Works", | |
"bullet_points": [ | |
"Overview of AI algorithms", | |
[ | |
"Types of AI algorithms", | |
[ | |
"Rule-based systems", | |
"Decision tree systems", | |
"Neural networks" | |
] | |
], | |
"How AI processes data" | |
] | |
}, | |
{ | |
"heading": "Pros of AI", | |
"bullet_points": [ | |
"Increased efficiency and productivity", | |
"Improved accuracy and precision", | |
"Enhanced decision-making capabilities", | |
"Personalized experiences" | |
] | |
}, | |
{ | |
"heading": "Cons of AI", | |
"bullet_points": [ | |
"Job displacement and loss of employment", | |
"Bias and discrimination", | |
"Privacy and security concerns", | |
"Dependence on technology" | |
] | |
}, | |
{ | |
"heading": "Future Prospects of AI", | |
"bullet_points": [ | |
"Advancements in fields such as healthcare and finance", | |
"Increased use" | |
] | |
} | |
] | |
}''' | |
temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx') | |
path = pathlib.Path(temp.name) | |
generate_powerpoint_presentation( | |
json5.loads(json_data), | |
output_file_path=path, | |
slides_template='Blank' | |
) | |
temp.close() | |