Spaces:
Running
Running
import json | |
import logging | |
import time | |
import requests | |
from langchain.llms import Clarifai | |
from global_config import GlobalConfig | |
HF_API_URL = f"https://api-inference.huggingface.co/models/{GlobalConfig.HF_LLM_MODEL_NAME}" | |
HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"} | |
logging.basicConfig( | |
level=GlobalConfig.LOG_LEVEL, | |
format='%(asctime)s - %(message)s', | |
) | |
# llm = None | |
def get_llm(use_gpt: bool) -> Clarifai: | |
""" | |
Get a large language model (hosted by Clarifai). | |
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required | |
""" | |
if use_gpt: | |
_ = Clarifai( | |
pat=GlobalConfig.CLARIFAI_PAT, | |
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT, | |
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT, | |
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT, | |
verbose=True, | |
# temperature=0.1, | |
) | |
else: | |
_ = Clarifai( | |
pat=GlobalConfig.CLARIFAI_PAT, | |
user_id=GlobalConfig.CLARIFAI_USER_ID, | |
app_id=GlobalConfig.CLARIFAI_APP_ID, | |
model_id=GlobalConfig.CLARIFAI_MODEL_ID, | |
verbose=True, | |
# temperature=0.1, | |
) | |
# print(llm) | |
return _ | |
def hf_api_query(payload: dict): | |
""" | |
Invoke HF inference end-point API. | |
:param payload: The prompt for the LLM and related parameters | |
:return: The output from the LLM | |
""" | |
logging.debug(f'{payload=}') | |
response = requests.post(HF_API_URL, headers=HF_API_HEADERS, json=payload) | |
return response.json() | |
def generate_slides_content(topic: str) -> str: | |
""" | |
Generate the outline/contents of slides for a presentation on a given topic. | |
:param topic: Topic on which slides are to be generated | |
:return: The content in JSON format | |
""" | |
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file: | |
template_txt = in_file.read().strip() | |
template_txt = template_txt.replace('<REPLACE_PLACEHOLDER>', topic) | |
output = hf_api_query({ | |
"inputs": template_txt, | |
"parameters": { | |
'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE, | |
'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH, | |
'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, | |
'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, | |
'num_return_sequences': 1, | |
'return_full_text': False, | |
# "repetition_penalty": 0.0001 | |
}, | |
"options": { | |
'wait_for_model': True, | |
'use_cache': True | |
} | |
}) | |
output = output[0]['generated_text'].strip() | |
# output = output[len(template_txt):] | |
logging.debug(f'{output=}') | |
json_end_idx = output.rfind('```') | |
if json_end_idx != -1: | |
# logging.debug(f'{json_end_idx=}') | |
output = output[:json_end_idx] | |
return output | |
def get_ai_image(text: str) -> str: | |
""" | |
Get a Stable Diffusion-generated image based on a given text. | |
:param text: The input text | |
:return: The Base 64-encoded image | |
""" | |
url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs''' | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}' | |
} | |
data = { | |
"inputs": [ | |
{ | |
"data": { | |
"text": { | |
"raw": text | |
} | |
} | |
} | |
] | |
} | |
# print('*** AI image generator...') | |
# print(url) | |
start = time.time() | |
response = requests.post( | |
url=url, | |
headers=headers, | |
data=json.dumps(data) | |
) | |
stop = time.time() | |
# print('Response:', response, response.status_code) | |
logging.debug('Image generation took', stop - start, 'seconds') | |
img_data = '' | |
if response.ok: | |
# print('*** Clarifai SDXL request: Response OK') | |
json_data = json.loads(response.text) | |
img_data = json_data['outputs'][0]['data']['image']['base64'] | |
else: | |
logging.error('*** Image generation failed:', response.text) | |
return img_data | |
if __name__ == '__main__': | |
# results = get_related_websites('5G AI WiFi 6') | |
# | |
# for a_result in results.results: | |
# print(a_result.title, a_result.url, a_result.extract) | |
# get_ai_image('A talk on AI, covering pros and cons') | |
pass | |