slide-deck-ai / helpers /llm_helper.py
barunsaha's picture
Add support for offline LLMs via Ollama
4184417
"""
Helper functions to access LLMs.
"""
import logging
import re
import sys
from typing import Tuple, Union
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
from langchain_core.language_models import BaseLLM
sys.path.append('..')
from global_config import GlobalConfig
LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
OLLAMA_MODEL_REGEX = re.compile(r'[a-zA-Z0-9._:-]+$')
# 6-64 characters long, only containing alphanumeric characters, hyphens, and underscores
API_KEY_REGEX = re.compile(r'^[a-zA-Z0-9_-]{6,64}$')
HF_API_HEADERS = {'Authorization': f'Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}'}
REQUEST_TIMEOUT = 35
logger = logging.getLogger(__name__)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
retries = Retry(
total=5,
backoff_factor=0.25,
backoff_jitter=0.3,
status_forcelist=[502, 503, 504],
allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)
def get_provider_model(provider_model: str, use_ollama: bool) -> Tuple[str, str]:
"""
Parse and get LLM provider and model name from strings like `[provider]model/name-version`.
:param provider_model: The provider, model name string from `GlobalConfig`.
:param use_ollama: Whether Ollama is used (i.e., running in offline mode).
:return: The provider and the model name; empty strings in case no matching pattern found.
"""
provider_model = provider_model.strip()
if use_ollama:
match = OLLAMA_MODEL_REGEX.match(provider_model)
if match:
return GlobalConfig.PROVIDER_OLLAMA, match.group(0)
else:
match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)
if match:
inside_brackets = match.group(1)
outside_brackets = match.group(2)
return inside_brackets, outside_brackets
return '', ''
def is_valid_llm_provider_model(provider: str, model: str, api_key: str) -> bool:
"""
Verify whether LLM settings are proper.
This function does not verify whether `api_key` is correct. It only confirms that the key has
at least five characters. Key verification is done when the LLM is created.
:param provider: Name of the LLM provider.
:param model: Name of the model.
:param api_key: The API key or access token.
:return: `True` if the settings "look" OK; `False` otherwise.
"""
if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
return False
if provider in [
GlobalConfig.PROVIDER_GOOGLE_GEMINI,
GlobalConfig.PROVIDER_COHERE,
] and not api_key:
return False
if api_key:
return API_KEY_REGEX.match(api_key) is not None
return True
def get_langchain_llm(
provider: str,
model: str,
max_new_tokens: int,
api_key: str = ''
) -> Union[BaseLLM, None]:
"""
Get an LLM based on the provider and model specified.
:param provider: The LLM provider. Valid values are `hf` for Hugging Face.
:param model: The name of the LLM.
:param max_new_tokens: The maximum number of tokens to generate.
:param api_key: API key or access token to use.
:return: An instance of the LLM or `None` in case of any error.
"""
if provider == GlobalConfig.PROVIDER_HUGGING_FACE:
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
logger.debug('Getting LLM via HF endpoint: %s', model)
return HuggingFaceEndpoint(
repo_id=model,
max_new_tokens=max_new_tokens,
top_k=40,
top_p=0.95,
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
repetition_penalty=1.03,
streaming=True,
huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
return_full_text=False,
stop_sequences=['</s>'],
)
if provider == GlobalConfig.PROVIDER_GOOGLE_GEMINI:
from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
from langchain_google_genai import GoogleGenerativeAI
logger.debug('Getting LLM via Google Gemini: %s', model)
return GoogleGenerativeAI(
model=model,
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
max_tokens=max_new_tokens,
timeout=None,
max_retries=2,
google_api_key=api_key,
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE
}
)
if provider == GlobalConfig.PROVIDER_COHERE:
from langchain_cohere.llms import Cohere
logger.debug('Getting LLM via Cohere: %s', model)
return Cohere(
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
max_tokens=max_new_tokens,
timeout_seconds=None,
max_retries=2,
cohere_api_key=api_key,
streaming=True,
)
if provider == GlobalConfig.PROVIDER_OLLAMA:
from langchain_ollama.llms import OllamaLLM
logger.debug('Getting LLM via Ollama: %s', model)
return OllamaLLM(
model=model,
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
num_predict=max_new_tokens,
format='json',
streaming=True,
)
return None
if __name__ == '__main__':
inputs = [
'[co]Cohere',
'[hf]mistralai/Mistral-7B-Instruct-v0.2',
'[gg]gemini-1.5-flash-002'
]
for text in inputs:
print(get_provider_model(text, use_ollama=False))