Spaces:
Running
Running
Allow users to provide their own HF access token/API key
Browse files- app.py +38 -26
- global_config.py +4 -3
- helpers/llm_helper.py +67 -72
app.py
CHANGED
@@ -54,19 +54,6 @@ def _get_prompt_template(is_refinement: bool) -> str:
|
|
54 |
return template
|
55 |
|
56 |
|
57 |
-
@st.cache_resource
|
58 |
-
def _get_llm(repo_id: str, max_new_tokens: int):
|
59 |
-
"""
|
60 |
-
Get an LLM instance.
|
61 |
-
|
62 |
-
:param repo_id: The model name.
|
63 |
-
:param max_new_tokens: The max new tokens to generate.
|
64 |
-
:return: The LLM.
|
65 |
-
"""
|
66 |
-
|
67 |
-
return llm_helper.get_hf_endpoint(repo_id, max_new_tokens)
|
68 |
-
|
69 |
-
|
70 |
APP_TEXT = _load_strings()
|
71 |
|
72 |
# Session variables
|
@@ -81,18 +68,35 @@ texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
|
|
81 |
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
|
82 |
|
83 |
with st.sidebar:
|
|
|
84 |
pptx_template = st.sidebar.radio(
|
85 |
-
'Select a presentation template:',
|
86 |
texts,
|
87 |
captions=captions,
|
88 |
horizontal=True
|
89 |
)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
).split(' ')[0]
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def build_ui():
|
98 |
"""
|
@@ -101,9 +105,9 @@ def build_ui():
|
|
101 |
|
102 |
st.title(APP_TEXT['app_name'])
|
103 |
st.subheader(APP_TEXT['caption'])
|
104 |
-
st.markdown(
|
105 |
-
|
106 |
-
)
|
107 |
|
108 |
with st.expander('Usage Policies and Limitations'):
|
109 |
st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2'])
|
@@ -162,9 +166,15 @@ def set_up_chat_ui():
|
|
162 |
)
|
163 |
return
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
logger.info(
|
166 |
'User input: %s | #characters: %d | LLM: %s',
|
167 |
-
prompt, len(prompt),
|
168 |
)
|
169 |
st.chat_message('user').write(prompt)
|
170 |
|
@@ -193,15 +203,17 @@ def set_up_chat_ui():
|
|
193 |
response = ''
|
194 |
|
195 |
try:
|
196 |
-
for chunk in
|
197 |
-
|
198 |
-
|
|
|
|
|
199 |
).stream(formatted_template):
|
200 |
response += chunk
|
201 |
|
202 |
# Update the progress bar
|
203 |
progress_percentage = min(
|
204 |
-
len(response) / GlobalConfig.
|
205 |
)
|
206 |
progress_bar.progress(
|
207 |
progress_percentage,
|
|
|
54 |
return template
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
APP_TEXT = _load_strings()
|
58 |
|
59 |
# Session variables
|
|
|
68 |
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
|
69 |
|
70 |
with st.sidebar:
|
71 |
+
# The PPT templates
|
72 |
pptx_template = st.sidebar.radio(
|
73 |
+
'1: Select a presentation template:',
|
74 |
texts,
|
75 |
captions=captions,
|
76 |
horizontal=True
|
77 |
)
|
78 |
+
|
79 |
+
# The LLMs
|
80 |
+
llm_provider_to_use = st.sidebar.selectbox(
|
81 |
+
label='2: Select an LLM to use:',
|
82 |
+
options=[f'{k} ({v["description"]})' for k, v in GlobalConfig.VALID_MODELS.items()],
|
83 |
+
index=0,
|
84 |
+
help=(
|
85 |
+
'LLM provider codes:\n\n'
|
86 |
+
'- **[hf]**: Hugging Face Inference Endpoint\n'
|
87 |
+
),
|
88 |
).split(' ')[0]
|
89 |
|
90 |
+
# The API key/access token
|
91 |
+
api_key_token = st.text_input(
|
92 |
+
label=(
|
93 |
+
'3: Paste your API key/access token:\n\n'
|
94 |
+
'*Optional* if an HF Mistral LLM is selected from the list but still encouraged.\n\n'
|
95 |
+
),
|
96 |
+
type='password',
|
97 |
+
)
|
98 |
+
st.caption('(Wrong HF access token will lead to validation error)')
|
99 |
+
|
100 |
|
101 |
def build_ui():
|
102 |
"""
|
|
|
105 |
|
106 |
st.title(APP_TEXT['app_name'])
|
107 |
st.subheader(APP_TEXT['caption'])
|
108 |
+
# st.markdown(
|
109 |
+
# '![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)' # noqa: E501
|
110 |
+
# )
|
111 |
|
112 |
with st.expander('Usage Policies and Limitations'):
|
113 |
st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2'])
|
|
|
166 |
)
|
167 |
return
|
168 |
|
169 |
+
provider, llm_name = llm_helper.get_provider_model(llm_provider_to_use)
|
170 |
+
|
171 |
+
if not provider or not llm_name:
|
172 |
+
st.error('No valid LLM provider and/or model name found!')
|
173 |
+
return
|
174 |
+
|
175 |
logger.info(
|
176 |
'User input: %s | #characters: %d | LLM: %s',
|
177 |
+
prompt, len(prompt), llm_name
|
178 |
)
|
179 |
st.chat_message('user').write(prompt)
|
180 |
|
|
|
203 |
response = ''
|
204 |
|
205 |
try:
|
206 |
+
for chunk in llm_helper.get_langchain_llm(
|
207 |
+
provider=provider,
|
208 |
+
model=llm_name,
|
209 |
+
max_new_tokens=GlobalConfig.VALID_MODELS[llm_provider_to_use]['max_new_tokens'],
|
210 |
+
api_key=api_key_token.strip(),
|
211 |
).stream(formatted_template):
|
212 |
response += chunk
|
213 |
|
214 |
# Update the progress bar
|
215 |
progress_percentage = min(
|
216 |
+
len(response) / GlobalConfig.VALID_MODELS[llm_provider_to_use]['max_new_tokens'], 0.95
|
217 |
)
|
218 |
progress_bar.progress(
|
219 |
progress_percentage,
|
global_config.py
CHANGED
@@ -17,12 +17,13 @@ class GlobalConfig:
|
|
17 |
A data class holding the configurations.
|
18 |
"""
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
'description': 'faster, shorter',
|
23 |
'max_new_tokens': 8192
|
24 |
},
|
25 |
-
'mistralai/Mistral-Nemo-Instruct-2407': {
|
26 |
'description': 'longer response',
|
27 |
'max_new_tokens': 12228
|
28 |
},
|
|
|
17 |
A data class holding the configurations.
|
18 |
"""
|
19 |
|
20 |
+
VALID_PROVIDERS = {'hf'}
|
21 |
+
VALID_MODELS = {
|
22 |
+
'[hf]mistralai/Mistral-7B-Instruct-v0.2': {
|
23 |
'description': 'faster, shorter',
|
24 |
'max_new_tokens': 8192
|
25 |
},
|
26 |
+
'[hf]mistralai/Mistral-Nemo-Instruct-2407': {
|
27 |
'description': 'longer response',
|
28 |
'max_new_tokens': 12228
|
29 |
},
|
helpers/llm_helper.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
import logging
|
|
|
|
|
|
|
2 |
import requests
|
3 |
from requests.adapters import HTTPAdapter
|
4 |
from urllib3.util import Retry
|
@@ -9,7 +12,8 @@ from langchain_core.language_models import LLM
|
|
9 |
from global_config import GlobalConfig
|
10 |
|
11 |
|
12 |
-
|
|
|
13 |
REQUEST_TIMEOUT = 35
|
14 |
|
15 |
logger = logging.getLogger(__name__)
|
@@ -27,12 +31,31 @@ http_session.mount('https://', adapter)
|
|
27 |
http_session.mount('http://', adapter)
|
28 |
|
29 |
|
30 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"""
|
32 |
Get an LLM via the HuggingFaceEndpoint of LangChain.
|
33 |
|
34 |
:param repo_id: The model name.
|
35 |
:param max_new_tokens: The max new tokens to generate.
|
|
|
36 |
:return: The HF LLM inference endpoint.
|
37 |
"""
|
38 |
|
@@ -46,82 +69,54 @@ def get_hf_endpoint(repo_id: str, max_new_tokens: int) -> LLM:
|
|
46 |
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
|
47 |
repetition_penalty=1.03,
|
48 |
streaming=True,
|
49 |
-
huggingfacehub_api_token=GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
|
50 |
return_full_text=False,
|
51 |
stop_sequences=['</s>'],
|
52 |
)
|
53 |
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
# output = hf_api_query({
|
91 |
-
# 'inputs': template_txt,
|
92 |
-
# 'parameters': {
|
93 |
-
# 'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE,
|
94 |
-
# 'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH,
|
95 |
-
# 'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
|
96 |
-
# 'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
|
97 |
-
# 'num_return_sequences': 1,
|
98 |
-
# 'return_full_text': False,
|
99 |
-
# # "repetition_penalty": 0.0001
|
100 |
-
# },
|
101 |
-
# 'options': {
|
102 |
-
# 'wait_for_model': True,
|
103 |
-
# 'use_cache': True
|
104 |
-
# }
|
105 |
-
# })
|
106 |
-
#
|
107 |
-
# output = output[0]['generated_text'].strip()
|
108 |
-
# # output = output[len(template_txt):]
|
109 |
-
#
|
110 |
-
# json_end_idx = output.rfind('```')
|
111 |
-
# if json_end_idx != -1:
|
112 |
-
# # logging.debug(f'{json_end_idx=}')
|
113 |
-
# output = output[:json_end_idx]
|
114 |
-
#
|
115 |
-
# logger.debug('generate_slides_content: output: %s', output)
|
116 |
-
#
|
117 |
-
# return output
|
118 |
|
119 |
|
120 |
if __name__ == '__main__':
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
|
|
1 |
import logging
|
2 |
+
import re
|
3 |
+
from typing import Tuple, Union
|
4 |
+
|
5 |
import requests
|
6 |
from requests.adapters import HTTPAdapter
|
7 |
from urllib3.util import Retry
|
|
|
12 |
from global_config import GlobalConfig
|
13 |
|
14 |
|
15 |
+
LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
|
16 |
+
HF_API_HEADERS = {'Authorization': f'Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}'}
|
17 |
REQUEST_TIMEOUT = 35
|
18 |
|
19 |
logger = logging.getLogger(__name__)
|
|
|
31 |
http_session.mount('http://', adapter)
|
32 |
|
33 |
|
34 |
+
def get_provider_model(provider_model: str) -> Tuple[str, str]:
|
35 |
+
"""
|
36 |
+
Parse and get LLM provider and model name from strings like `[provider]model/name-version`.
|
37 |
+
|
38 |
+
:param provider_model: The provider, model name string from `GlobalConfig`.
|
39 |
+
:return: The provider and the model name.
|
40 |
+
"""
|
41 |
+
|
42 |
+
match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)
|
43 |
+
|
44 |
+
if match:
|
45 |
+
inside_brackets = match.group(1)
|
46 |
+
outside_brackets = match.group(2)
|
47 |
+
return inside_brackets, outside_brackets
|
48 |
+
|
49 |
+
return '', ''
|
50 |
+
|
51 |
+
|
52 |
+
def get_hf_endpoint(repo_id: str, max_new_tokens: int, api_key: str = '') -> LLM:
|
53 |
"""
|
54 |
Get an LLM via the HuggingFaceEndpoint of LangChain.
|
55 |
|
56 |
:param repo_id: The model name.
|
57 |
:param max_new_tokens: The max new tokens to generate.
|
58 |
+
:param api_key: [Optional] Hugging Face access token.
|
59 |
:return: The HF LLM inference endpoint.
|
60 |
"""
|
61 |
|
|
|
69 |
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
|
70 |
repetition_penalty=1.03,
|
71 |
streaming=True,
|
72 |
+
huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
|
73 |
return_full_text=False,
|
74 |
stop_sequences=['</s>'],
|
75 |
)
|
76 |
|
77 |
|
78 |
+
def get_langchain_llm(
|
79 |
+
provider: str,
|
80 |
+
model: str,
|
81 |
+
max_new_tokens: int,
|
82 |
+
api_key: str = ''
|
83 |
+
) -> Union[LLM, None]:
|
84 |
+
"""
|
85 |
+
Get an LLM based on the provider and model specified.
|
86 |
+
|
87 |
+
:param provider: The LLM provider. Valid values are `hf` for Hugging Face.
|
88 |
+
:param model:
|
89 |
+
:param max_new_tokens:
|
90 |
+
:param api_key:
|
91 |
+
:return:
|
92 |
+
"""
|
93 |
+
if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
|
94 |
+
return None
|
95 |
+
|
96 |
+
if provider == 'hf':
|
97 |
+
logger.debug('Getting LLM via HF endpoint: %s', model)
|
98 |
+
|
99 |
+
return HuggingFaceEndpoint(
|
100 |
+
repo_id=model,
|
101 |
+
max_new_tokens=max_new_tokens,
|
102 |
+
top_k=40,
|
103 |
+
top_p=0.95,
|
104 |
+
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
|
105 |
+
repetition_penalty=1.03,
|
106 |
+
streaming=True,
|
107 |
+
huggingfacehub_api_token=api_key or GlobalConfig.HUGGINGFACEHUB_API_TOKEN,
|
108 |
+
return_full_text=False,
|
109 |
+
stop_sequences=['</s>'],
|
110 |
+
)
|
111 |
+
|
112 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
if __name__ == '__main__':
|
116 |
+
inputs = [
|
117 |
+
'[hf]mistralai/Mistral-7B-Instruct-v0.2',
|
118 |
+
'[gg]gemini-1.5-flash-002'
|
119 |
+
]
|
120 |
|
121 |
+
for text in inputs:
|
122 |
+
print(get_provider_model(text))
|