""" Streamlit app containing the UI and the application logic. """ import datetime import logging import pathlib import random import sys import tempfile from typing import List, Union import huggingface_hub import json5 import requests import streamlit as st from langchain_community.chat_message_histories import StreamlitChatMessageHistory from langchain_core.messages import HumanMessage from langchain_core.prompts import ChatPromptTemplate sys.path.append('..') sys.path.append('../..') from global_config import GlobalConfig from helpers import llm_helper, pptx_helper, text_helper @st.cache_data def _load_strings() -> dict: """ Load various strings to be displayed in the app. :return: The dictionary of strings. """ with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file: return json5.loads(in_file.read()) @st.cache_data def _get_prompt_template(is_refinement: bool) -> str: """ Return a prompt template. :param is_refinement: Whether this is the initial or refinement prompt. :return: The prompt template as f-string. """ if is_refinement: with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: template = in_file.read() else: with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: template = in_file.read() return template @st.cache_resource def _get_llm(repo_id: str, max_new_tokens: int): """ Get an LLM instance. :param repo_id: The model name. :param max_new_tokens: The max new tokens to generate. :return: The LLM. """ return llm_helper.get_hf_endpoint(repo_id, max_new_tokens) APP_TEXT = _load_strings() # Session variables CHAT_MESSAGES = 'chat_messages' DOWNLOAD_FILE_KEY = 'download_file_name' IS_IT_REFINEMENT = 'is_it_refinement' logger = logging.getLogger(__name__) texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys()) captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts] with st.sidebar: pptx_template = st.sidebar.radio( 'Select a presentation template:', texts, captions=captions, horizontal=True ) st.divider() llm_to_use = st.sidebar.selectbox( 'Select an LLM to use:', [f'{k} ({v["description"]})' for k, v in GlobalConfig.HF_MODELS.items()] ).split(' ')[0] def build_ui(): """ Display the input elements for content generation. """ st.title(APP_TEXT['app_name']) st.subheader(APP_TEXT['caption']) st.markdown( '![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)' # noqa: E501 ) with st.expander('Usage Policies and Limitations'): st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2']) set_up_chat_ui() def set_up_chat_ui(): """ Prepare the chat interface and related functionality. """ with st.expander('Usage Instructions'): st.markdown(GlobalConfig.CHAT_USAGE_INSTRUCTIONS) st.info( 'If you like SlideDeck AI, please consider leaving a heart ❤️ on the' ' [Hugging Face Space](https://huggingface.co/spaces/barunsaha/slide-deck-ai/) or' ' a star ⭐ on [GitHub](https://github.com/barun-saha/slide-deck-ai).' ' Your [feedback](https://forms.gle/JECFBGhjvSj7moBx9) is appreciated.' ) # view_messages = st.expander('View the messages in the session state') st.chat_message('ai').write( random.choice(APP_TEXT['ai_greetings']) ) history = StreamlitChatMessageHistory(key=CHAT_MESSAGES) if _is_it_refinement(): template = _get_prompt_template(is_refinement=True) else: template = _get_prompt_template(is_refinement=False) prompt_template = ChatPromptTemplate.from_template(template) # Since Streamlit app reloads at every interaction, display the chat history # from the save session state for msg in history.messages: msg_type = msg.type if msg_type == 'user': st.chat_message(msg_type).write(msg.content) else: st.chat_message(msg_type).code(msg.content, language='json') if prompt := st.chat_input( placeholder=APP_TEXT['chat_placeholder'], max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH ): if not text_helper.is_valid_prompt(prompt): st.error( 'Not enough information provided!' ' Please be a little more descriptive and type a few words' ' with a few characters :)' ) return logger.info( 'User input: %s | #characters: %d | LLM: %s', prompt, len(prompt), llm_to_use ) st.chat_message('user').write(prompt) user_messages = _get_user_messages() user_messages.append(prompt) list_of_msgs = [ f'{idx + 1}. {msg}' for idx, msg in enumerate(user_messages) ] list_of_msgs = '\n'.join(list_of_msgs) if _is_it_refinement(): formatted_template = prompt_template.format( **{ 'instructions': list_of_msgs, 'previous_content': _get_last_response(), } ) else: formatted_template = prompt_template.format( **{ 'question': prompt, } ) progress_bar = st.progress(0, 'Preparing to call LLM...') response = '' try: for chunk in _get_llm( repo_id=llm_to_use, max_new_tokens=GlobalConfig.HF_MODELS[llm_to_use]['max_new_tokens'] ).stream(formatted_template): response += chunk # Update the progress bar progress_percentage = min( len(response) / GlobalConfig.HF_MODELS[llm_to_use]['max_new_tokens'], 0.95 ) progress_bar.progress( progress_percentage, text='Streaming content...this might take a while...' ) except requests.exceptions.ConnectionError: msg = ( 'A connection error occurred while streaming content from the LLM endpoint.' ' Unfortunately, the slide deck cannot be generated. Please try again later.' ' Alternatively, try selecting a different LLM from the dropdown list.' ) logger.error(msg) st.error(msg) return except huggingface_hub.errors.ValidationError as ve: msg = ( f'An error occurred while trying to generate the content: {ve}' '\nPlease try again with a significantly shorter input text.' ) logger.error(msg) st.error(msg) return except Exception as ex: msg = ( f'An unexpected error occurred while generating the content: {ex}' '\nPlease try again later, possibly with different inputs.' ' Alternatively, try selecting a different LLM from the dropdown list.' ) logger.error(msg) st.error(msg) return history.add_user_message(prompt) history.add_ai_message(response) # The content has been generated as JSON # There maybe trailing ``` at the end of the response -- remove them # To be careful: ``` may be part of the content as well when code is generated response_cleaned = text_helper.get_clean_json(response) logger.info( 'Cleaned JSON response:: original length: %d | cleaned length: %d', len(response), len(response_cleaned) ) # logger.debug('Cleaned JSON: %s', response_cleaned) # Now create the PPT file progress_bar.progress( GlobalConfig.LLM_PROGRESS_MAX, text='Finding photos online and generating the slide deck...' ) path = generate_slide_deck(response_cleaned) progress_bar.progress(1.0, text='Done!') st.chat_message('ai').code(response, language='json') if path: _display_download_button(path) logger.info( '#messages in history / 2: %d', len(st.session_state[CHAT_MESSAGES]) / 2 ) def generate_slide_deck(json_str: str) -> Union[pathlib.Path, None]: """ Create a slide deck and return the file path. In case there is any error creating the slide deck, the path may be to an empty file. :param json_str: The content in *valid* JSON format. :return: The path to the .pptx file or `None` in case of error. """ try: parsed_data = json5.loads(json_str) except ValueError: st.error( 'Encountered error while parsing JSON...will fix it and retry' ) logger.error( 'Caught ValueError: trying again after repairing JSON...' ) try: parsed_data = json5.loads(text_helper.fix_malformed_json(json_str)) except ValueError: st.error( 'Encountered an error again while fixing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.' ) logger.error( 'Caught ValueError: failed to repair JSON!' ) return None except RecursionError: st.error( 'Encountered an error while parsing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.' ) logger.error('Caught RecursionError while parsing JSON. Cannot generate the slide deck!') return None except Exception: st.error( 'Encountered an error while parsing JSON...' 'the slide deck cannot be created, unfortunately ☹' '\nPlease try again later.' ) logger.error( 'Caught ValueError: failed to parse JSON!' ) return None if DOWNLOAD_FILE_KEY in st.session_state: path = pathlib.Path(st.session_state[DOWNLOAD_FILE_KEY]) else: temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx') path = pathlib.Path(temp.name) st.session_state[DOWNLOAD_FILE_KEY] = str(path) if temp: temp.close() try: logger.debug('Creating PPTX file: %s...', st.session_state[DOWNLOAD_FILE_KEY]) pptx_helper.generate_powerpoint_presentation( parsed_data, slides_template=pptx_template, output_file_path=path ) except Exception as ex: st.error(APP_TEXT['content_generation_error']) logger.error('Caught a generic exception: %s', str(ex)) return path def _is_it_refinement() -> bool: """ Whether it is the initial prompt or a refinement. :return: True if it is the initial prompt; False otherwise. """ if IS_IT_REFINEMENT in st.session_state: return True if len(st.session_state[CHAT_MESSAGES]) >= 2: # Prepare for the next call st.session_state[IS_IT_REFINEMENT] = True return True return False def _get_user_messages() -> List[str]: """ Get a list of user messages submitted until now from the session state. :return: The list of user messages. """ return [ msg.content for msg in st.session_state[CHAT_MESSAGES] if isinstance(msg, HumanMessage) ] def _get_last_response() -> str: """ Get the last response generated by AI. :return: The response text. """ return st.session_state[CHAT_MESSAGES][-1].content def _display_messages_history(view_messages: st.expander): """ Display the history of messages. :param view_messages: The list of AI and Human messages. """ with view_messages: view_messages.json(st.session_state[CHAT_MESSAGES]) def _display_download_button(file_path: pathlib.Path): """ Display a download button to download a slide deck. :param file_path: The path of the .pptx file. """ with open(file_path, 'rb') as download_file: st.download_button( 'Download PPTX file ⬇️', data=download_file, file_name='Presentation.pptx', key=datetime.datetime.now() ) def main(): """ Trigger application run. """ build_ui() if __name__ == '__main__': main()