import json import logging import time import requests from langchain.llms import Clarifai from global_config import GlobalConfig HF_API_URL = f"https://api-inference.huggingface.co/models/{GlobalConfig.HF_LLM_MODEL_NAME}" HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"} logging.basicConfig( level=GlobalConfig.LOG_LEVEL, format='%(asctime)s - %(message)s', ) # llm = None def get_llm(use_gpt: bool) -> Clarifai: """ Get a large language model (hosted by Clarifai). :param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required """ if use_gpt: _ = Clarifai( pat=GlobalConfig.CLARIFAI_PAT, user_id=GlobalConfig.CLARIFAI_USER_ID_GPT, app_id=GlobalConfig.CLARIFAI_APP_ID_GPT, model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT, verbose=True, # temperature=0.1, ) else: _ = Clarifai( pat=GlobalConfig.CLARIFAI_PAT, user_id=GlobalConfig.CLARIFAI_USER_ID, app_id=GlobalConfig.CLARIFAI_APP_ID, model_id=GlobalConfig.CLARIFAI_MODEL_ID, verbose=True, # temperature=0.1, ) # print(llm) return _ def hf_api_query(payload: dict): """ Invoke HF inference end-point API. :param payload: The prompt for the LLM and related parameters :return: The output from the LLM """ logging.debug(f'{payload=}') response = requests.post(HF_API_URL, headers=HF_API_HEADERS, json=payload) return response.json() def generate_slides_content(topic: str) -> str: """ Generate the outline/contents of slides for a presentation on a given topic. :param topic: Topic on which slides are to be generated :return: The content in JSON format """ with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file: template_txt = in_file.read().strip() template_txt = template_txt.replace('', topic) output = hf_api_query({ "inputs": template_txt, "parameters": { 'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE, 'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH, 'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, 'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH, 'num_return_sequences': 1, 'return_full_text': False, # "repetition_penalty": 0.0001 }, "options": { 'wait_for_model': True, 'use_cache': True } }) output = output[0]['generated_text'].strip() # output = output[len(template_txt):] logging.debug(f'{output=}') json_end_idx = output.rfind('```') if json_end_idx != -1: # logging.debug(f'{json_end_idx=}') output = output[:json_end_idx] return output def get_ai_image(text: str) -> str: """ Get a Stable Diffusion-generated image based on a given text. :param text: The input text :return: The Base 64-encoded image """ url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs''' headers = { "Content-Type": "application/json", "Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}' } data = { "inputs": [ { "data": { "text": { "raw": text } } } ] } # print('*** AI image generator...') # print(url) start = time.time() response = requests.post( url=url, headers=headers, data=json.dumps(data) ) stop = time.time() # print('Response:', response, response.status_code) logging.debug('Image generation took', stop - start, 'seconds') img_data = '' if response.ok: # print('*** Clarifai SDXL request: Response OK') json_data = json.loads(response.text) img_data = json_data['outputs'][0]['data']['image']['base64'] else: logging.error('*** Image generation failed:', response.text) return img_data if __name__ == '__main__': # results = get_related_websites('5G AI WiFi 6') # # for a_result in results.results: # print(a_result.title, a_result.url, a_result.extract) # get_ai_image('A talk on AI, covering pros and cons') pass