import json import logging import time import requests from langchain.llms import Clarifai from global_config import GlobalConfig logging.basicConfig( level=GlobalConfig.LOG_LEVEL, format='%(asctime)s - %(message)s', ) llm = None def get_llm(use_gpt: bool) -> Clarifai: """ Get a large language model. :param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required """ if use_gpt: _ = Clarifai( pat=GlobalConfig.CLARIFAI_PAT, user_id=GlobalConfig.CLARIFAI_USER_ID_GPT, app_id=GlobalConfig.CLARIFAI_APP_ID_GPT, model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT, verbose=True, # temperature=0.1, ) else: _ = Clarifai( pat=GlobalConfig.CLARIFAI_PAT, user_id=GlobalConfig.CLARIFAI_USER_ID, app_id=GlobalConfig.CLARIFAI_APP_ID, model_id=GlobalConfig.CLARIFAI_MODEL_ID, verbose=True, # temperature=0.1, ) # print(llm) return _ def generate_slides_content(topic: str) -> str: """ Generate the outline/contents of slides for a presentation on a given topic. :param topic: Topic/subject matter/idea on which slides are to be generated :return: The content in JSON format """ # global prompt global llm with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file: template_txt = in_file.read().strip() template_txt = template_txt.replace('', topic) if llm is None: llm = get_llm(use_gpt=True) print(llm) slides_content = llm(template_txt, verbose=True) return slides_content def get_ai_image(text: str) -> str: """ Get a Stable Diffusion-generated image based on a given text. :param text: The input text :return: The Base 64-encoded image """ url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs''' headers = { "Content-Type": "application/json", "Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}' } data = { "inputs": [ { "data": { "text": { "raw": text } } } ] } # print('*** AI image generator...') # print(url) start = time.time() response = requests.post( url=url, headers=headers, data=json.dumps(data) ) stop = time.time() # print('Response:', response, response.status_code) logging.debug('Image generation took', stop - start, 'seconds') img_data = '' if response.ok: # print('*** Clarifai SDXL request: Response OK') json_data = json.loads(response.text) img_data = json_data['outputs'][0]['data']['image']['base64'] else: logging.error('*** Image generation failed:', response.text) return img_data if __name__ == '__main__': # results = get_related_websites('5G AI WiFi 6') # # for a_result in results.results: # print(a_result.title, a_result.url, a_result.extract) # get_ai_image('A talk on AI, covering pros and cons') pass