""" Generate and save the embeddings of a pre-defined list of icons. Compare them with keywords embeddings to find most relevant icons. """ import os import pathlib import sys from typing import List, Tuple import numpy as np from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel sys.path.append('..') sys.path.append('../..') from global_config import GlobalConfig tokenizer = BertTokenizer.from_pretrained(GlobalConfig.TINY_BERT_MODEL) model = BertModel.from_pretrained(GlobalConfig.TINY_BERT_MODEL) def get_icons_list() -> List[str]: """ Get a list of available icons. :return: The icons file names. """ items = pathlib.Path('../' + GlobalConfig.ICONS_DIR).glob('*.png') items = [ os.path.basename(str(item)).removesuffix('.png') for item in items ] return items def get_embeddings(texts) -> np.ndarray: """ Generate embeddings for a list of texts using a pre-trained language model. :param texts: A string or a list of strings to be converted into embeddings. :type texts: Union[str, List[str]] :return: A NumPy array containing the embeddings for the input texts. :rtype: numpy.ndarray :raises ValueError: If the input is not a string or a list of strings, or if any element in the list is not a string. Example usage: >>> keyword = 'neural network' >>> file_names = ['neural_network_icon.png', 'data_analysis_icon.png', 'machine_learning.png'] >>> keyword_embeddings = get_embeddings(keyword) >>> file_name_embeddings = get_embeddings(file_names) """ inputs = tokenizer(texts, return_tensors='pt', padding=True, max_length=128, truncation=True) outputs = model(**inputs) return outputs.last_hidden_state.mean(dim=1).detach().numpy() def save_icons_embeddings(): """ Generate and save the embeddings for the icon file names. """ file_names = get_icons_list() print(f'{len(file_names)} icon files available...') file_name_embeddings = get_embeddings(file_names) print(f'file_name_embeddings.shape: {file_name_embeddings.shape}') # Save embeddings to a file np.save(GlobalConfig.EMBEDDINGS_FILE_NAME, file_name_embeddings) np.save(GlobalConfig.ICONS_FILE_NAME, file_names) # Save file names for reference def load_saved_embeddings() -> Tuple[np.ndarray, np.ndarray]: """ Load precomputed embeddings and icons file names. :return: The embeddings and the icon file names. """ file_name_embeddings = np.load(GlobalConfig.EMBEDDINGS_FILE_NAME) file_names = np.load(GlobalConfig.ICONS_FILE_NAME) return file_name_embeddings, file_names def find_icons(keywords: List[str]) -> List[str]: """ Find relevant icon file names for a list of keywords. :param keywords: The list of one or more keywords. :return: A list of the file names relevant for each keyword. """ keyword_embeddings = get_embeddings(keywords) file_name_embeddings, file_names = load_saved_embeddings() # Compute similarity similarities = cosine_similarity(keyword_embeddings, file_name_embeddings) icon_files = file_names[np.argmax(similarities, axis=-1)] return icon_files def main(): """ Example usage. """ # Run this again if icons are to be added/removed save_icons_embeddings() keywords = [ 'deep learning', '', 'recycling', 'handshake', 'Ferry', 'rain drop', 'speech bubble', 'mental resilience', 'turmeric', 'Art', 'price tag', 'Oxygen', 'oxygen', 'Social Connection', 'Accomplishment', ] icon_files = find_icons(keywords) print( f'The relevant icon files are:\n' f'{list(zip(keywords, icon_files))}' ) # BERT tiny: # [('deep learning', 'deep-learning'), ('', '123'), ('recycling', 'refinery'), # ('handshake', 'dash-circle'), ('Ferry', 'cart'), ('rain drop', 'bucket'), # ('speech bubble', 'globe'), ('mental resilience', 'exclamation-triangle'), # ('turmeric', 'kebab'), ('Art', 'display'), ('price tag', 'bug-fill'), # ('Oxygen', 'radioactive')] # BERT mini # [('deep learning', 'deep-learning'), ('', 'compass'), ('recycling', 'tools'), # ('handshake', 'bandaid'), ('Ferry', 'cart'), ('rain drop', 'trash'), # ('speech bubble', 'image'), ('mental resilience', 'recycle'), ('turmeric', 'linkedin'), # ('Art', 'book'), ('price tag', 'card-image'), ('Oxygen', 'radioactive')] # BERT small # [('deep learning', 'deep-learning'), ('', 'gem'), ('recycling', 'tools'), # ('handshake', 'handbag'), ('Ferry', 'truck'), ('rain drop', 'bucket'), # ('speech bubble', 'strategy'), ('mental resilience', 'deep-learning'), # ('turmeric', 'flower'), # ('Art', 'book'), ('price tag', 'hotdog'), ('Oxygen', 'radioactive')] if __name__ == '__main__': main()