Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
import motmetrics as mm | |
import numpy as np | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
>>> import numpy as np | |
>>> mean_iou = evaluate.load("mean_iou") | |
>>> # suppose one has 3 different segmentation maps predicted | |
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) | |
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) | |
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) | |
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) | |
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) | |
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) | |
>>> predicted = [predicted_1, predicted_2, predicted_3] | |
>>> ground_truth = [actual_1, actual_2, actual_3] | |
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) | |
>>> print(results) # doctest: +NORMALIZE_WHITESPACE | |
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class MyMetricv2(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
"predictions": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
"references": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
) | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def _compute(self, predictions, references): | |
"""Returns the scores""" | |
# TODO: Compute the different scores of the module | |
# <frame number>, <object id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <confidence>, <x>, <y>, <z> | |
return calculate(predictions, references) | |
def calculate(predictions, references): | |
"""Returns the scores""" | |
try: | |
np_predictions = np.array(predictions) | |
np_references = np.array(references) | |
except: | |
raise ValueError("The predictions and references should be lists of floats in the correct format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]") | |
print(predictions) | |
print(references) | |
return { | |
"predictions": predictions, | |
"references": references | |
} | |