Spaces:
Sleeping
Sleeping
bascobasculino
commited on
Commit
·
4f61238
1
Parent(s):
3b2900b
yeah
Browse files- my_metricv2.py +64 -29
- tests.py +34 -14
my_metricv2.py
CHANGED
@@ -29,8 +29,10 @@ year={2020}
|
|
29 |
|
30 |
# TODO: Add description of the module here
|
31 |
_DESCRIPTION = """\
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
|
36 |
# TODO: Add description of the arguments of the module here
|
@@ -42,35 +44,70 @@ Args:
|
|
42 |
should be a string with tokens separated by spaces.
|
43 |
references: list of reference for each prediction. Each
|
44 |
reference should be a string with tokens separated by spaces.
|
|
|
|
|
|
|
45 |
Returns:
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
Examples:
|
49 |
>>> import numpy as np
|
50 |
-
>>>
|
51 |
-
|
52 |
-
>>>
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
|
71 |
-
# TODO: Define external resources urls if needed
|
72 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
73 |
-
|
74 |
|
75 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
76 |
class MyMetricv2(evaluate.Metric):
|
@@ -145,6 +182,4 @@ def calculate(predictions, references, max_iou: float = 0.5):
|
|
145 |
|
146 |
mh = mm.metrics.create()
|
147 |
summary = mh.compute(acc)
|
148 |
-
|
149 |
-
|
150 |
-
return summary
|
|
|
29 |
|
30 |
# TODO: Add description of the module here
|
31 |
_DESCRIPTION = """\
|
32 |
+
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
|
33 |
+
algorithms by computing various metrics based on predicted and ground truth bounding
|
34 |
+
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
|
35 |
+
aiding in the iterative improvement of tracking algorithms."""
|
36 |
|
37 |
|
38 |
# TODO: Add description of the arguments of the module here
|
|
|
44 |
should be a string with tokens separated by spaces.
|
45 |
references: list of reference for each prediction. Each
|
46 |
reference should be a string with tokens separated by spaces.
|
47 |
+
max_iou (`float`, *optional*):
|
48 |
+
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
|
49 |
+
Default is 0.5.
|
50 |
Returns:
|
51 |
+
summary: pandas.DataFrame with the following columns:
|
52 |
+
- idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
|
53 |
+
- idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
|
54 |
+
- idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
|
55 |
+
- recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
|
56 |
+
- precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
|
57 |
+
- num_unique_objects: Total number of unique objects in the ground truth.
|
58 |
+
- mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
|
59 |
+
- partially_tracked: Number of objects that are partially tracked but not mostly tracked.
|
60 |
+
- mostly_lost: Number of objects that are mostly lost throughout the sequence.
|
61 |
+
- num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
|
62 |
+
- num_misses: Number of missed detections (ground truth objects not detected in the predictions).
|
63 |
+
- num_switches: Number of identity switches.
|
64 |
+
- num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
|
65 |
+
- mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
|
66 |
+
- motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
|
67 |
+
- num_transfer: Number of track transfers.
|
68 |
+
- num_ascend: Number of ascended track IDs.
|
69 |
+
- num_migrate: Number of track ID migrations.
|
70 |
+
|
71 |
Examples:
|
72 |
>>> import numpy as np
|
73 |
+
>>> module = evaluate.load("bascobasculino/my_metricv2")
|
74 |
+
|
75 |
+
>>> predicted =[
|
76 |
+
[1,1,10,20,30,40,0.85],
|
77 |
+
[1,2,50,60,70,80,0.92],
|
78 |
+
[1,3,80,90,100,110,0.75],
|
79 |
+
[2,1,15,25,35,45,0.78],
|
80 |
+
[2,2,55,65,75,85,0.95],
|
81 |
+
[3,1,20,30,40,50,0.88],
|
82 |
+
[3,2,60,70,80,90,0.82],
|
83 |
+
[4,1,25,35,45,55,0.91],
|
84 |
+
[4,2,65,75,85,95,0.89]
|
85 |
+
]
|
86 |
+
|
87 |
+
>>> ground_truth = [
|
88 |
+
[1, 1, 10, 20, 30, 40],
|
89 |
+
[1, 2, 50, 60, 70, 80],
|
90 |
+
[1, 3, 85, 95, 105, 115],
|
91 |
+
[2, 1, 15, 25, 35, 45],
|
92 |
+
[2, 2, 55, 65, 75, 85],
|
93 |
+
[3, 1, 20, 30, 40, 50],
|
94 |
+
[3, 2, 60, 70, 80, 90],
|
95 |
+
[4, 1, 25, 35, 45, 55],
|
96 |
+
[5, 1, 30, 40, 50, 60],
|
97 |
+
[5, 2, 70, 80, 90, 100]
|
98 |
+
]
|
99 |
+
>>> predicted = [np.array(a) for a in predicted]
|
100 |
+
>>> ground_truth = [np.array(a) for a in ground_truth]
|
101 |
+
|
102 |
+
>>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
|
103 |
+
>>> print(results)
|
104 |
+
{'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888}, 'idr': {0: 0.8}, 'recall': {0: 0.8},
|
105 |
+
'precision': {0: 0.8888888888888888}, 'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
|
106 |
+
'partially_tracked': {0: 1}, 'mostly_lost': {0: 0}, 'num_false_positives': {0: 1}, 'num_misses': {0: 2},
|
107 |
+
'num_switches': {0: 0}, 'num_fragmentations': {0: 0}, 'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
|
108 |
+
'num_transfer': {0: 0}, 'num_ascend': {0: 0}, 'num_migrate': {0: 0}}
|
109 |
"""
|
110 |
|
|
|
|
|
|
|
111 |
|
112 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
113 |
class MyMetricv2(evaluate.Metric):
|
|
|
182 |
|
183 |
mh = mm.metrics.create()
|
184 |
summary = mh.compute(acc)
|
185 |
+
return summary.to_dict()
|
|
|
|
tests.py
CHANGED
@@ -1,17 +1,37 @@
|
|
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
-
"predictions": [
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"references": [
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
]
|
|
|
1 |
+
import numpy as np
|
2 |
test_cases = [
|
3 |
{
|
4 |
+
"predictions": [np.array(a) for a in [
|
5 |
+
[1,1,10,20,30,40,0.85],
|
6 |
+
[1,2,50,60,70,80,0.92],
|
7 |
+
[1,3,80,90,100,110,0.75],
|
8 |
+
[2,1,15,25,35,45,0.78],
|
9 |
+
[2,2,55,65,75,85,0.95],
|
10 |
+
[3,1,20,30,40,50,0.88],
|
11 |
+
[3,2,60,70,80,90,0.82],
|
12 |
+
[4,1,25,35,45,55,0.91],
|
13 |
+
[4,2,65,75,85,95,0.89]
|
14 |
+
]],
|
15 |
+
"references": [np.array(a) for a in [
|
16 |
+
[1, 1, 10, 20, 30, 40],
|
17 |
+
[1, 2, 50, 60, 70, 80],
|
18 |
+
[1, 3, 85, 95, 105, 115],
|
19 |
+
[2, 1, 15, 25, 35, 45],
|
20 |
+
[2, 2, 55, 65, 75, 85],
|
21 |
+
[3, 1, 20, 30, 40, 50],
|
22 |
+
[3, 2, 60, 70, 80, 90],
|
23 |
+
[4, 1, 25, 35, 45, 55],
|
24 |
+
[5, 1, 30, 40, 50, 60],
|
25 |
+
[5, 2, 70, 80, 90, 100]
|
26 |
+
]],
|
27 |
+
"result": {'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888},
|
28 |
+
'idr': {0: 0.8}, 'recall': {0: 0.8}, 'precision': {0: 0.8888888888888888},
|
29 |
+
'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
|
30 |
+
'partially_tracked': {0: 1}, 'mostly_lost': {0: 0},
|
31 |
+
'num_false_positives': {0: 1}, 'num_misses': {0: 2},
|
32 |
+
'num_switches': {0: 0}, 'num_fragmentations': {0: 0},
|
33 |
+
'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
|
34 |
+
'num_transfer': {0: 0}, 'num_ascend': {0: 0},
|
35 |
+
'num_migrate': {0: 0}}
|
36 |
+
},
|
37 |
]
|