File size: 12,420 Bytes
22b8701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import numpy as np
import torch
import torch.nn.functional as F
from typing import Iterable, Tuple, Union
from pathlib import Path
from torchvision import transforms
import kornia
from omegaconf import DictConfig
from src.FaceDetector.face_detector import Detection
from src.FaceAlign.face_align import align_face, inverse_transform_batch
from src.PostProcess.utils import SoftErosion
from src.model_loader import get_model
from src.Misc.types import CheckpointType, FaceAlignmentType
from src.Misc.utils import tensor2img
class SimSwap:
def __init__(
self,
config: DictConfig,
id_image: Union[np.ndarray, None] = None,
specific_image: Union[np.ndarray, None] = None,
):
self.id_image: Union[np.ndarray, None] = id_image
self.id_latent: Union[torch.Tensor, None] = None
self.specific_id_image: Union[np.ndarray, None] = specific_image
self.specific_latent: Union[torch.Tensor, None] = None
self.use_mask: Union[bool, None] = True
self.crop_size: Union[int, None] = None
self.checkpoint_type: Union[CheckpointType, None] = None
self.face_alignment_type: Union[FaceAlignmentType, None] = None
self.smooth_mask_iter: Union[int, None] = None
self.smooth_mask_kernel_size: Union[int, None] = None
self.smooth_mask_threshold: Union[float, None] = None
self.face_detector_threshold: Union[float, None] = None
self.specific_latent_match_threshold: Union[float, None] = None
self.device = torch.device(config.device)
self.set_parameters(config)
# For BiSeNet and for official_224 SimSwap
self.to_tensor_normalize = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# For SimSwap models trained with the updated code
self.to_tensor = transforms.ToTensor()
self.face_detector = get_model(
"face_detector",
device=self.device,
load_state_dice=False,
model_path=Path(config.face_detector_weights),
det_thresh=self.face_detector_threshold,
det_size=(640, 640),
mode="ffhq",
)
self.face_id_net = get_model(
"arcface",
device=self.device,
load_state_dice=False,
model_path=Path(config.face_id_weights),
)
self.bise_net = get_model(
"parsing_model",
device=self.device,
load_state_dice=True,
model_path=Path(config.parsing_model_weights),
n_classes=19,
)
gen_model = "generator_512" if self.crop_size == 512 else "generator_224"
self.simswap_net = get_model(
gen_model,
device=self.device,
load_state_dice=True,
model_path=Path(config.simswap_weights),
input_nc=3,
output_nc=3,
latent_size=512,
n_blocks=9,
deep=True if self.crop_size == 512 else False,
use_last_act=True
if self.checkpoint_type == CheckpointType.OFFICIAL_224
else False,
)
self.blend = get_model(
"blend_module",
device=self.device,
load_state_dice=False,
model_path=Path(config.blend_module_weights)
)
self.enhance_output = config.enhance_output
if config.enhance_output:
self.gfpgan_net = get_model(
"gfpgan",
device=self.device,
load_state_dice=True,
model_path=Path(config.gfpgan_weights)
)
def set_parameters(self, config) -> None:
self.set_crop_size(config.crop_size)
self.set_checkpoint_type(config.checkpoint_type)
self.set_face_alignment_type(config.face_alignment_type)
self.set_face_detector_threshold(config.face_detector_threshold)
self.set_specific_latent_match_threshold(config.specific_latent_match_threshold)
self.set_smooth_mask_kernel_size(config.smooth_mask_kernel_size)
self.set_smooth_mask_threshold(config.smooth_mask_threshold)
self.set_smooth_mask_iter(config.smooth_mask_iter)
def set_crop_size(self, crop_size: int) -> None:
if crop_size < 0:
raise "Invalid crop_size! Must be a positive value."
self.crop_size = crop_size
def set_checkpoint_type(self, checkpoint_type: str) -> None:
type = CheckpointType(checkpoint_type)
if type not in (CheckpointType.OFFICIAL_224, CheckpointType.UNOFFICIAL):
raise "Invalid checkpoint_type! Must be one of the predefined values."
self.checkpoint_type = type
def set_face_alignment_type(self, face_alignment_type: str) -> None:
type = FaceAlignmentType(face_alignment_type)
if type not in (
FaceAlignmentType.FFHQ,
FaceAlignmentType.DEFAULT,
):
raise "Invalid face_alignment_type! Must be one of the predefined values."
self.face_alignment_type = type
def set_face_detector_threshold(self, face_detector_threshold: float) -> None:
if face_detector_threshold < 0.0 or face_detector_threshold > 1.0:
raise "Invalid face_detector_threshold! Must be a positive value in range [0.0...1.0]."
self.face_detector_threshold = face_detector_threshold
def set_specific_latent_match_threshold(
self, specific_latent_match_threshold: float
) -> None:
if specific_latent_match_threshold < 0.0:
raise "Invalid specific_latent_match_th! Must be a positive value."
self.specific_latent_match_threshold = specific_latent_match_threshold
def re_initialize_soft_mask(self):
self.smooth_mask = SoftErosion(kernel_size=self.smooth_mask_kernel_size,
threshold=self.smooth_mask_threshold,
iterations=self.smooth_mask_iter).to(self.device)
def set_smooth_mask_kernel_size(self, smooth_mask_kernel_size: int) -> None:
if smooth_mask_kernel_size < 0:
raise "Invalid smooth_mask_kernel_size! Must be a positive value."
smooth_mask_kernel_size += 1 if smooth_mask_kernel_size % 2 == 0 else 0
self.smooth_mask_kernel_size = smooth_mask_kernel_size
self.re_initialize_soft_mask()
def set_smooth_mask_threshold(self, smooth_mask_threshold: int) -> None:
if smooth_mask_threshold < 0 or smooth_mask_threshold > 1.0:
raise "Invalid smooth_mask_threshold! Must be within 0...1 range."
self.smooth_mask_threshold = smooth_mask_threshold
self.re_initialize_soft_mask()
def set_smooth_mask_iter(self, smooth_mask_iter: float) -> None:
if smooth_mask_iter < 0:
raise "Invalid smooth_mask_iter! Must be a positive value.."
self.smooth_mask_iter = smooth_mask_iter
self.re_initialize_soft_mask()
def run_detect_align(self, image: np.ndarray, for_id: bool = False) -> Tuple[Union[Iterable[np.ndarray], None],
Union[Iterable[np.ndarray], None],
np.ndarray]:
detection: Detection = self.face_detector(image)
if detection.bbox is None:
if for_id:
raise "Can't detect a face! Please change the ID image!"
return None, None, detection.score
kps = detection.key_points
if for_id:
max_score_ind = np.argmax(detection.score, axis=0)
kps = detection.key_points[max_score_ind]
kps = kps[None, ...]
align_imgs, transforms = align_face(
image,
kps,
crop_size=self.crop_size,
mode="ffhq"
if self.face_alignment_type == FaceAlignmentType.FFHQ
else "none",
)
return align_imgs, transforms, detection.score
def __call__(self, att_image: np.ndarray) -> np.ndarray:
if self.id_latent is None:
align_id_imgs, id_transforms, _ = self.run_detect_align(
self.id_image, for_id=True
)
# normalize=True, because official SimSwap model trained with normalized id_lattent
self.id_latent: torch.Tensor = self.face_id_net(
align_id_imgs, normalize=True
)
if self.specific_id_image is not None and self.specific_latent is None:
align_specific_imgs, specific_transforms, _ = self.run_detect_align(
self.specific_id_image, for_id=True
)
self.specific_latent: torch.Tensor = self.face_id_net(
align_specific_imgs, normalize=False
)
# for_id=False, because we want to get all faces
align_att_imgs, att_transforms, att_detection_score = self.run_detect_align(
att_image, for_id=False
)
if align_att_imgs is None and att_transforms is None:
return att_image
# Select specific crop from the target image
if self.specific_latent is not None:
att_latent: torch.Tensor = self.face_id_net(align_att_imgs, normalize=False)
latent_dist = torch.mean(
F.mse_loss(
att_latent,
self.specific_latent.repeat(att_latent.shape[0], 1),
reduction="none",
),
dim=-1,
)
att_detection_score = torch.tensor(
att_detection_score, device=latent_dist.device
)
min_index = torch.argmin(latent_dist * att_detection_score)
min_value = latent_dist[min_index]
if min_value < self.specific_latent_match_threshold:
align_att_imgs = [align_att_imgs[min_index]]
att_transforms = [att_transforms[min_index]]
else:
return att_image
swapped_img: torch.Tensor = self.simswap_net(align_att_imgs, self.id_latent)
if self.enhance_output:
swapped_img = self.gfpgan_net.enhance(swapped_img, weight=0.5)
# Put all crops/transformations into a batch
align_att_img_batch_for_parsing_model: torch.Tensor = torch.stack(
[self.to_tensor_normalize(x) for x in align_att_imgs], dim=0
)
align_att_img_batch_for_parsing_model = (
align_att_img_batch_for_parsing_model.to(self.device)
)
att_transforms: torch.Tensor = torch.stack(
[torch.tensor(x).float() for x in att_transforms], dim=0
)
att_transforms = att_transforms.to(self.device, non_blocking=True)
align_att_img_batch: torch.Tensor = torch.stack(
[self.to_tensor(x) for x in align_att_imgs], dim=0
)
align_att_img_batch = align_att_img_batch.to(self.device, non_blocking=True)
# Get face masks for the attribute image
face_mask, ignore_mask_ids = self.bise_net.get_mask(
align_att_img_batch_for_parsing_model, self.crop_size
)
inv_att_transforms: torch.Tensor = inverse_transform_batch(att_transforms)
soft_face_mask, _ = self.smooth_mask(face_mask)
swapped_img[ignore_mask_ids, ...] = align_att_img_batch[ignore_mask_ids, ...]
frame_size = (att_image.shape[0], att_image.shape[1])
att_image = self.to_tensor(att_image).to(self.device, non_blocking=True).unsqueeze(0)
target_image = kornia.geometry.transform.warp_affine(
swapped_img,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="border",
align_corners=True,
fill_value=torch.zeros(3),
)
soft_face_mask = kornia.geometry.transform.warp_affine(
soft_face_mask,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="zeros",
align_corners=True,
fill_value=torch.zeros(3),
)
result = self.blend(target_image, soft_face_mask, att_image)
return tensor2img(result)
|